Viscosity methods for large deviations estimates of multiscale stochastic processes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 605-637.

Voir la notice de l'article provenant de la source Numdam

We study singular perturbation problems for second order HJB equations in an unbounded setting. The main applications are large deviations estimates for the short maturity asymptotics of stochastic systems affected by a stochastic volatility, where the volatility is modelled by a process evolving at a faster time scale and satisfying some condition implying ergodicity.

DOI : 10.1051/cocv/2017051
Classification : 35XX, 49Lxx, 37Axx
Keywords: Viscosity solutions, Hamilton−Jacobi−Bellman equations, homogenization and singular perturbations, large deviations, stochastic volatility models

Ghilli, Daria 1

1
@article{COCV_2018__24_2_605_0,
     author = {Ghilli, Daria},
     title = {Viscosity methods for large deviations estimates of multiscale stochastic processes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {605--637},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017051},
     zbl = {1403.35334},
     mrnumber = {3816407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017051/}
}
TY  - JOUR
AU  - Ghilli, Daria
TI  - Viscosity methods for large deviations estimates of multiscale stochastic processes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 605
EP  - 637
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017051/
DO  - 10.1051/cocv/2017051
LA  - en
ID  - COCV_2018__24_2_605_0
ER  - 
%0 Journal Article
%A Ghilli, Daria
%T Viscosity methods for large deviations estimates of multiscale stochastic processes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 605-637
%V 24
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017051/
%R 10.1051/cocv/2017051
%G en
%F COCV_2018__24_2_605_0
Ghilli, Daria. Viscosity methods for large deviations estimates of multiscale stochastic processes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 605-637. doi : 10.1051/cocv/2017051. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017051/

[1] O. Alvarez and M. Bardi, Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40 (2001/02) 1159–1188 | Zbl | MR | DOI

[2] O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170 (2003) 17–61 | Zbl | MR | DOI

[3] O. Alvarez and M. Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations. In vol. 960 of Memoirs of the American Mathematical Society (2010) vi+77 | Zbl | MR

[4] O. Alvarez, M. Bardi and C. Marchi, Multiscale problems and homogenization for second-order Hamilton−Jacobi equations. J. Differ. Equ. 243 (2007) 349–387 | Zbl | MR | DOI

[5] M. Arisawa and P.-L. Lions, On ergodic stochastic control. Commun. Partial Differ. Equ. 23 (1998) 2187–2217 | Zbl | MR | DOI

[6] M. Bardi, A. Cesaroni and L. Manca, Convergence by viscosity methods in multiscale financial models with stochastic volatility. Siam J. Financial Math. 1 (2010) 230–265 | MR | Zbl | DOI

[7] M. Bardi, A. Cesaroni and D. Ghilli, Large deviations for some fast stochastic volatility models by viscosity methods. Discrete Contin. Dyn. Syst. A. 35 (2015) 3965–3988 | MR | Zbl | DOI

[8] G. Barles, A weak bernstein method for fully nonlinear elliptic equations. Differ. Integral Equ. 4 (1991) 241–262 | MR | Zbl

[9] G. Barles, C0,α-regularity and estimates for solutions of elliptic and parabolic equations by the Ishii−Lions method. Gakuto International Series, Math. Sci. Appl. 30 (2008) 33–47

[10] G. Barles, A short proof of the C0,α-regularity of viscosity subsolutions for superquadratic viscous Hamilton−Jacobi equations and applications. Nonlinear Anal. 73 (2010) 31–47 | MR | Zbl | DOI

[11] G. Barles, Solutions de viscosité des équations de Hamilton−Jacobi. In Vol. 17 of Math. Appl. Springer Verlag (1994) | MR

[12] G. Barles, H. Ishii and H. Mitake, A new PDE approach to the large time asymptotics of solutions of Hamilton−Jacobi equations. Bull. Math. Sci. 3 (2013) 363–388 | MR | Zbl | DOI

[13] G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton−Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21 (1990) 21–44 | MR | Zbl | DOI

[14] G. Barles and P. Souganidis, Space-time periodic solutions and long-time behavior of solutions of quasilinear parabolic equations. SIAM J. Math. Anal. (electronic) 32 (2001) 1311–1323 | MR | Zbl | DOI

[15] A. Bensoussan, Perturbation Methods in Optimal Control, John Wiley and Sons, Montrouge, France (1988) | MR | Zbl

[16] V.S. Borkar and V. Gaitsgory, Singular perturbations in ergodic control of diffusions. SIAM J. Control Optim. 46 (2007) 1562–1577 | MR | Zbl | DOI

[17] I. Capuzzo Dolcetta, F. Leoni and A. Porretta, Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Amer. Math. Soc. 362 (2010) 4511–4536 | MR | Zbl | DOI

[18] P. Cardaliaguet, A note on the regularity of solutions of Hamilton−Jacobi equationswith superlinear growth in the gradient variable. ESAIM: COCV 15 (2009) 367–376 | MR | Zbl | mathdoc-id

[19] P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton−Jacobi equationswith superquadratic growth in the gradient and unbounded right-hand side. Comm. Partial Differ. Equ. 37 (2012) 1668–1688 | MR | Zbl | DOI

[20] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67 | MR | Zbl | DOI

[21] F. Da Lio and O. Ley, Uniqueness results for second order Bellman-Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45 (2006) 74–106 | MR | Zbl | DOI

[22] G. Dal Maso and H. Frankowska, Value functions for Boltza problems with discontinuous lagrangian and Hamilton−Jacobi inequality. ESAIM: COCV 5 (2000) 369–393 | MR | Zbl | mathdoc-id

[23] L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359–375 | MR | Zbl | DOI

[24] L.C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. Henri Poincaré Anal. Non Linéaire 2 (1985) 1–20 | MR | Zbl | mathdoc-id | DOI

[25] J. Feng, J.-P. Fouque and R. Kumar, Small time asymptotic for fast mean-reverting stochastic volatility models. Ann. Appl. Probab. 22 (2012) 1541–1575 | MR | Zbl | DOI

[26] J. Feng and T.G. Kurtz, Large deviations for stochastic processes. Amer. Math. Soc. Providence, RI (2006) | MR | Zbl

[27] J.-P. Fouque, G. Papanicolaou and K.R. Sircar, Derivatives in financial markets with stochastic volatility. Cambridge university press, Cambridge (2000) | MR | Zbl

[28] D. Ghilli, Some results in nonlinear PDEs: large deviations problems, nonlocal operators and stability for some isoperimetric problems. Ph.D. thesis, Dept. of Mathematics, Univ. of Padua (2016)

[29] R.Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan denRijn, The Netherlands, Germantown, MD (1980) | MR

[30] N. Ichihara, Recurrence and transience of optimal feedback processes associated with Bellman equations of ergodic type. SIAM J. Control Optim. 49 (2011) 1938–1960 | MR | Zbl | DOI

[31] N. Ichihara and S. Sheu, Large time behavior of solutions of Hamilton−Jacobi−Bellman equations with quadratic nonlinearity in gradient. J. Math. Anal. 45 (2013) 279–306 | MR | Zbl

[32] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83 (1990) 26–78 | MR | Zbl | DOI

[33] H. Kaise and S. Sheu, On the structure of solution of ergodic type Bellman equation related to risk-sensitive control. Ann. Probab. 34 (2006) 284–320 | MR | Zbl | DOI

[34] O. Ley and V. Duc Nguyen Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems. Nonlinear Analysis: Theory, Methods and Applications 130 (2016) 76–101 | MR | Zbl | DOI

[35] P.-L. Lions, Generalized solutions of Hamilton−Jacobi equations. Pitman (Advanced Publishing Program), Boston, Mass. (1982) | MR | Zbl

[36] P.-L. Lions and M. Musiela, Ergodicity of Diffusion Processes. manuscript 2002

[37] P. -L. Lions and P.E. Souganidis, Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. Henri Poincaré – Ann. Non Lin. 22 (2005) 667–677 | MR | Zbl | mathdoc-id | DOI

[38] L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and Applied Mathematics (Boca Raton) 283. Chapman and Hall/, Boca Raton, FL (2007) xxxii+526 | MR | Zbl

[39] E. Pardoux and A. Yu. Veretennikov, On the Poisson equation and diffusion approximation, I. Ann. Probab. 29 (2001) 1061–1085 | MR | Zbl | DOI

[40] E. Pardoux and A. Yu Veretennikov, On the Poisson equation and diffusion approximation II. Ann. Probab. 31 (2003) 1166–1192 | MR | Zbl | DOI

[41] E. Pardoux and A. Yu And Veretennikov, On the Poisson equation and diffusion approximation. III, Ann. Probab. 33 (2005) 1111–1133 | MR | Zbl

[42] M.V. Safonov, On the classical solution of nonlinear elliptic equations of second order. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988) 1272–1287 | MR | Zbl

[43] N.S. Trudinger, On regularity and existence of viscoity solutions of nonlinear second order, elliptic equations. Partial differential equations and the Calculus of variations: Essays in Honor of Ennio de Giorgi, Progress in Nonlinear Differential Equations and theirApplications. Birkhaüser Boston Inc. (1989) | MR | Zbl

[44] A. Yu. Veretennikov, On large deviations for SDEs with small diffusion and averaging. Stochastic Process. Appl. 89 (2000) 69–79 | MR | Zbl | DOI

Cité par Sources :