Voir la notice de l'article provenant de la source Numdam
It is well known that the quadratic Wasserstein distance is formally equivalent, for infinitesimally small perturbations, to some weighted homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the distance exhibits some localization phenomenon: if and are measures on and is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between and by an explicit multiple of .
Peyre, Rémi 1
@article{COCV_2018__24_4_1489_0, author = {Peyre, R\'emi}, title = {Comparison between {W\protect\textsubscript{2}} distance and Ḣ\protect\textsuperscript{\ensuremath{-}1} norm, and {Localization} of {Wasserstein} distance}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1489--1501}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017050}, zbl = {1415.49031}, mrnumber = {3922440}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/} }
TY - JOUR AU - Peyre, Rémi TI - Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1489 EP - 1501 VL - 24 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/ DO - 10.1051/cocv/2017050 LA - en ID - COCV_2018__24_4_1489_0 ER -
%0 Journal Article %A Peyre, Rémi %T Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1489-1501 %V 24 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/ %R 10.1051/cocv/2017050 %G en %F COCV_2018__24_4_1489_0
Peyre, Rémi. Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1489-1501. doi: 10.1051/cocv/2017050
Cité par Sources :