Voir la notice de l'article provenant de la source Numdam
It is well known that the quadratic Wasserstein distance is formally equivalent, for infinitesimally small perturbations, to some weighted homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the distance exhibits some localization phenomenon: if and are measures on and is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between and by an explicit multiple of .
Peyre, Rémi 1
@article{COCV_2018__24_4_1489_0, author = {Peyre, R\'emi}, title = {Comparison between {W\protect\textsubscript{2}} distance and Ḣ\protect\textsuperscript{\ensuremath{-}1} norm, and {Localization} of {Wasserstein} distance}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1489--1501}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017050}, zbl = {1415.49031}, mrnumber = {3922440}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/} }
TY - JOUR AU - Peyre, Rémi TI - Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1489 EP - 1501 VL - 24 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/ DO - 10.1051/cocv/2017050 LA - en ID - COCV_2018__24_4_1489_0 ER -
%0 Journal Article %A Peyre, Rémi %T Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1489-1501 %V 24 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/ %R 10.1051/cocv/2017050 %G en %F COCV_2018__24_4_1489_0
Peyre, Rémi. Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1489-1501. doi : 10.1051/cocv/2017050. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/
[1] Sur les inégalités de Sobolev logarithmiques, vol. 10 of Panoramas et Synthèses [Panoramas and Syntheses]. With a preface by Dominique Bakry and Michel Ledoux. Société Mathématique de France, Paris (2000) | MR | Zbl
, , , , , , and[2] A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393 | MR | Zbl | DOI
and ,[3] Integral inequalities of Hardy and Poincaré type. Proc. Amer. Math. Soc. 103 (1988) 172–176 | MR | Zbl
and ,[4] Spectral gap and concentration for some spherically symmetric probability measures. In Geometric aspects of functional analysis. In Vol. 1807 of Lect. Notes Math., Springer, Berlin (2003) 37–43 | MR | Zbl
,[5] A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 (2001) 219–257 | MR | Zbl | DOI
, and ,[6] An improved Poincaré inequality. Proc. Amer. Math. Soc. 120 (1994) 213–222 | MR | Zbl
,[7] Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86 (2006) 68–79 | MR | Zbl | DOI
,[8] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179 | MR | Zbl | DOI
,[9] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400 | MR | Zbl | DOI
and ,[10] Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds. Ann. Mat. Pura Appl. 184 (2005) 215–238 | Zbl | MR | DOI
,[11] Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121 | Zbl | MR | DOI
,[12] Mass transport and uniform rectifiability. Geom. Funct. Anal. 22 (2012) 478–527 | Zbl | MR | DOI
,[13] Topics in optimal transportation. In Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003) | Zbl | MR
,[14] Optimal Transport: Old and New. In Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer (2009) | Zbl | MR
,Cité par Sources :