Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1489-1501

Voir la notice de l'article provenant de la source Numdam

It is well known that the quadratic Wasserstein distance W 2 ( · , · ) is formally equivalent, for infinitesimally small perturbations, to some weighted H - 1 homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the W 2 distance exhibits some localization phenomenon: if μ and ν are measures on n and φ : n + is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between φ · μ and φ · ν by an explicit multiple of W 2 ( μ , ν ) .

DOI : 10.1051/cocv/2017050
Classification : 49Q20, 28A75, 46E35
Keywords: Wasserstein distance, homogeneous Sobolev norm, localization

Peyre, Rémi 1

1
@article{COCV_2018__24_4_1489_0,
     author = {Peyre, R\'emi},
     title = {Comparison between {W\protect\textsubscript{2}} distance and Ḣ\protect\textsuperscript{\ensuremath{-}1} norm, and {Localization} of {Wasserstein} distance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1489--1501},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017050},
     zbl = {1415.49031},
     mrnumber = {3922440},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/}
}
TY  - JOUR
AU  - Peyre, Rémi
TI  - Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1489
EP  - 1501
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/
DO  - 10.1051/cocv/2017050
LA  - en
ID  - COCV_2018__24_4_1489_0
ER  - 
%0 Journal Article
%A Peyre, Rémi
%T Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1489-1501
%V 24
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017050/
%R 10.1051/cocv/2017050
%G en
%F COCV_2018__24_4_1489_0
Peyre, Rémi. Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1489-1501. doi: 10.1051/cocv/2017050

Cité par Sources :