Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1075-1105

Voir la notice de l'article provenant de la source Numdam

We relate some constructions of stochastic analysis to differential geometry, via random walk approximations. We consider walks on both Riemannian and sub-Riemannian manifolds in which the steps consist of travel along either geodesics or integral curves associated to orthonormal frames, and we give particular attention to walks where the choice of step is influenced by a volume on the manifold. A primary motivation is to explore how one can pass, in the parabolic scaling limit, from geodesics, orthonormal frames, and/or volumes to diffusions, and hence their infinitesimal generators, on sub-Riemannian manifolds, which is interesting in light of the fact that there is no completely canonical notion of sub-Laplacian on a general sub-Riemannian manifold. However, even in the Riemannian case, this random walk approach illuminates the geometric significance of Ito and Stratonovich stochastic differential equations as well as the role played by the volume.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017037
Classification : 53C17, 60J65, 58J65
Keywords: Sub-Riemannian geometry, diffusion processes, Brownian motion, random walk

Agrachev, Andrei 1 ; Boscain, Ugo 1 ; Neel, Robert 1 ; Rizzi, Luca 1

1
@article{COCV_2018__24_3_1075_0,
     author = {Agrachev, Andrei and Boscain, Ugo and Neel, Robert and Rizzi, Luca},
     title = {Intrinsic random walks in {Riemannian} and {sub-Riemannian} geometry via volume sampling},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1075--1105},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017037},
     zbl = {1481.53041},
     mrnumber = {3877194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017037/}
}
TY  - JOUR
AU  - Agrachev, Andrei
AU  - Boscain, Ugo
AU  - Neel, Robert
AU  - Rizzi, Luca
TI  - Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1075
EP  - 1105
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017037/
DO  - 10.1051/cocv/2017037
LA  - en
ID  - COCV_2018__24_3_1075_0
ER  - 
%0 Journal Article
%A Agrachev, Andrei
%A Boscain, Ugo
%A Neel, Robert
%A Rizzi, Luca
%T Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1075-1105
%V 24
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017037/
%R 10.1051/cocv/2017037
%G en
%F COCV_2018__24_3_1075_0
Agrachev, Andrei; Boscain, Ugo; Neel, Robert; Rizzi, Luca. Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1075-1105. doi: 10.1051/cocv/2017037

Cité par Sources :