Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 28.

Voir la notice de l'article provenant de la source Numdam

We present new abstract results on the interrelation between the minimizing movement scheme for gradient flows along a sequence of Γ-converging functionals and the gradient flow motion for the corresponding limit functional, in a general metric space. We are able to allow a relaxed form of minimization in each step of the scheme, and so we present new relaxation results too.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017035
Classification : 35K55, 35K90, 49M25, 47J25, 47J30
Keywords: Gradient flows, minimizing movements, Γ-convergence, relaxation, curves of maximal slope

Fleißner, Florentine 1

1
@article{COCV_2019__25__A28_0,
     author = {Flei{\ss}ner, Florentine},
     title = {\ensuremath{\Gamma}-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2017035},
     zbl = {1442.49017},
     mrnumber = {3990648},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017035/}
}
TY  - JOUR
AU  - Fleißner, Florentine
TI  - Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017035/
DO  - 10.1051/cocv/2017035
LA  - en
ID  - COCV_2019__25__A28_0
ER  - 
%0 Journal Article
%A Fleißner, Florentine
%T Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017035/
%R 10.1051/cocv/2017035
%G en
%F COCV_2019__25__A28_0
Fleißner, Florentine. Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 28. doi : 10.1051/cocv/2017035. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2017035/

[1] F. Almgren, J.E. Taylor and L. Wang, Curvature-Driven Flows: A Variational Approach. SIAM J. Control Optimiz. 31 (1993) 387–437. | Zbl | MR | DOI

[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Math. ETH Zürich, Birkhäuser (2005). | Zbl | MR

[3] H. Attouch, Variational convergence for functions and operators. Pitman (Advanced Publishing Program), Boston, MA (1984). | Zbl | MR

[4] A. Braides, Gamma-convergence for Beginners, vol. 22. Oxford University Press (2002). | Zbl | MR | DOI

[5] A. Braides, Local Minimization, Variational Evolution and Γ-Convergence. Vol. 2094 of Lect. Notes Math. Springer  (2012). | Zbl | MR

[6] A. Braides and L. Truskinovsky, Asymptotic expansions by γ-convergence. Continuum Mech. Therm. 20 (2008) 21–62. | Zbl | MR | DOI

[7] P.G. Ciarlet, The finite element method for elliptic problems, In Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1978). | Zbl | MR

[8] M. Colombo and M. Gobbino, Passing to the limit in maximal slope curves: from a regularized perona–malik equation to the total variation flow. Math. Models Methods Appl. Sci. 22 (2012) 1250017. | Zbl | MR | DOI

[9] G. Dal Maso An Introduction to Γ-Convergence, vol. 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993). | Zbl | MR

[10] S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal transportation. In vol. 413 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2014) 100–144. | Zbl | MR

[11] E. De Giorgi New problems on minimizing movements, in Boundary Value Problems for PDE and Applications, edited by C. Baiocchi and J.L. Lions. Masson (1993) 81–98. | Zbl | MR

[12] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187. | Zbl | MR

[13] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dellenergia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital 8 (1973) 391–411. | Zbl | MR

[14] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity. Nonlinear Anal. 9 (1985) 1401–1443. | Zbl | MR | DOI

[15] N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Partial Differ. Equ. 39 (2010) 101–120. | Zbl | MR | DOI

[16] A. Marino, C. Saccon and M. Tosques, Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 281–330. | Zbl | MR | mathdoc-id

[17] A. Mielke, On evolutionary Γ-convergence for gradient systems. Lect. Notes Appl. Math. Mech. Springer (2016). | MR | DOI

[18] A. Mielke, R. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80 (2012) 381–410. | Zbl | MR | DOI

[19] A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calcul. Variat. Partial Differ. Equ. 31 (2008) 387–416. | Zbl | MR | DOI

[20] C. Ortner, Two variational techniques for the approximation of curves of maximal slope. Tech. Report NA-05/10, Oxford Comp. Lab. Report. Available at: http://web2.comlab.ox.ac.uk/oucl/publications/natr/na-05-10.html (2015).

[21] R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: COCV 12 (2006) 564–614. | Zbl | MR | mathdoc-id

[22] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57 (2004) 1627–1672. | Zbl | MR | DOI

[23] S. Serfaty, Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31 (2011) 1427–1451. | Zbl | MR | DOI

[24] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Sup. Pisa 21 (1967) 657–699. | Zbl | MR | mathdoc-id

Cité par Sources :