Reflected BSDEs, optimal control and stopping for infinite-dimensional systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1419-1445.

Voir la notice de l'article provenant de la source Numdam

We introduce the notion of mild supersolution for an obstacle problem in an infinite dimensional Hilbert space. The minimal supersolution of this problem is given in terms of a reflected BSDEs in an infinite dimensional Markovian framework. The results are applied to an optimal control and stopping problem.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016059
Classification : 60H15, 93E20
Keywords: Reflected backward stochastic differential equations, obstacle problem, optimal stopping in infinite dimension

Fuhrman, Marco 1 ; Masiero, Federica 2 ; Tessitore, Gianmario 2

1 Politecnico di Milano, Dipartimento di Matematica via Bonardi 9, 20133 Milano, Italy.
2 Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.
@article{COCV_2017__23_4_1419_0,
     author = {Fuhrman, Marco and Masiero, Federica and Tessitore, Gianmario},
     title = {Reflected {BSDEs,} optimal control and stopping for infinite-dimensional systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1419--1445},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016059},
     mrnumber = {3716927},
     zbl = {1375.60106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/}
}
TY  - JOUR
AU  - Fuhrman, Marco
AU  - Masiero, Federica
AU  - Tessitore, Gianmario
TI  - Reflected BSDEs, optimal control and stopping for infinite-dimensional systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1419
EP  - 1445
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/
DO  - 10.1051/cocv/2016059
LA  - en
ID  - COCV_2017__23_4_1419_0
ER  - 
%0 Journal Article
%A Fuhrman, Marco
%A Masiero, Federica
%A Tessitore, Gianmario
%T Reflected BSDEs, optimal control and stopping for infinite-dimensional systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1419-1445
%V 23
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/
%R 10.1051/cocv/2016059
%G en
%F COCV_2017__23_4_1419_0
Fuhrman, Marco; Masiero, Federica; Tessitore, Gianmario. Reflected BSDEs, optimal control and stopping for infinite-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1419-1445. doi : 10.1051/cocv/2016059. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/

J.P. Aubin and H. Frankowska, Set-valued analysis, in Vol. 2 of Systems and Control: Foundations and Applications. Birkhäuser Boston Inc., Boston, MA (1990). | MR | Zbl

A. Bensoussan, Stochastic control by functional analysis methods. Studies in Mathematics and its Applications, Vol. 11. North-Holland Publishing Co., Amsterdam, New York (1982). | MR | Zbl

G. Da Prato and J. Zabczyk,Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press (1992). | MR | Zbl

G. Da Prato and J. Zabczyk, Second order partial differential equations in Hilbert spaces. In Vol. 293 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2002). | MR | Zbl

C. Dellacherie and P.A. Meyer. Probability and Potential B: Theory of Martingales. North-Holland Amsterdam (1982). | MR | Zbl

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. | MR | Zbl | DOI

N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | MR | Zbl | DOI

I. Karatzas, S.E. Shreve, Steven, Brownian motion and stochastic calculus. Second edition. In Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York. | MR | Zbl

D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation. Appl. Math. Optim. 47 (2003) 253–278. | MR | Zbl | DOI

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 (2002) 1397–1465. | MR | Zbl | DOI

M. Fuhrman and G. Tessitore, The Bismut-Elworthy formula for backward SDEs and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Stoch. Stoch. Rep. 74 (2002) 429–464. | MR | Zbl | DOI

M. Fuhrman and G. Tessitore, Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004) 607–660. | MR | Zbl | DOI

M. Fuhrman and G. Tessitore, Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim. 51 (2005) 279–332. | MR | Zbl | DOI

Y. Hu and G. Tessitore, BSDE on an infinite horizon and elliptic PDEs in infinite dimension. NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) 825–846. | MR | Zbl | DOI

F. Masiero, Semilinear Kolmogorov equations and applications to stochastic optimal control. Appl. Math. Optim. 51 (2005) 201–250. | MR | Zbl | DOI

F. Masiero, Infinite horizon stochastic optimal control problems with degenerate noise and elliptic equations in Hilbert spaces. Appl. Math. Optim. 55 (2007) 285–326. | MR | Zbl | DOI

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. | MR | Zbl | DOI

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic partial differential equations and their applications, edited by B.L. Rozowskii and R.B. Sowers. In Vol. 176 of Lect. Notes Control Inf. Sci. Springer 176 (1992). | MR | Zbl

F. Russo and P. Vallois, The generalized covariation process and It formula. Stochastic Processes Appl. 59 (1995) 81–104. | MR | Zbl | DOI

J. Yong and X.Y. Zhou, Stochastic controls, Hamiltonian systems and HJB equations, Applications of Mathematics. Springer, New York (1999). | MR | Zbl

Cité par Sources :