Voir la notice de l'article provenant de la source Numdam
We introduce the notion of mild supersolution for an obstacle problem in an infinite dimensional Hilbert space. The minimal supersolution of this problem is given in terms of a reflected BSDEs in an infinite dimensional Markovian framework. The results are applied to an optimal control and stopping problem.
Fuhrman, Marco 1 ; Masiero, Federica 2 ; Tessitore, Gianmario 2
@article{COCV_2017__23_4_1419_0, author = {Fuhrman, Marco and Masiero, Federica and Tessitore, Gianmario}, title = {Reflected {BSDEs,} optimal control and stopping for infinite-dimensional systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1419--1445}, publisher = {EDP-Sciences}, volume = {23}, number = {4}, year = {2017}, doi = {10.1051/cocv/2016059}, mrnumber = {3716927}, zbl = {1375.60106}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/} }
TY - JOUR AU - Fuhrman, Marco AU - Masiero, Federica AU - Tessitore, Gianmario TI - Reflected BSDEs, optimal control and stopping for infinite-dimensional systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1419 EP - 1445 VL - 23 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/ DO - 10.1051/cocv/2016059 LA - en ID - COCV_2017__23_4_1419_0 ER -
%0 Journal Article %A Fuhrman, Marco %A Masiero, Federica %A Tessitore, Gianmario %T Reflected BSDEs, optimal control and stopping for infinite-dimensional systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1419-1445 %V 23 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/ %R 10.1051/cocv/2016059 %G en %F COCV_2017__23_4_1419_0
Fuhrman, Marco; Masiero, Federica; Tessitore, Gianmario. Reflected BSDEs, optimal control and stopping for infinite-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1419-1445. doi : 10.1051/cocv/2016059. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016059/
J.P. Aubin and H. Frankowska, Set-valued analysis, in Vol. 2 of Systems and Control: Foundations and Applications. Birkhäuser Boston Inc., Boston, MA (1990). | MR | Zbl
A. Bensoussan, Stochastic control by functional analysis methods. Studies in Mathematics and its Applications, Vol. 11. North-Holland Publishing Co., Amsterdam, New York (1982). | MR | Zbl
G. Da Prato and J. Zabczyk,Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press (1992). | MR | Zbl
G. Da Prato and J. Zabczyk, Second order partial differential equations in Hilbert spaces. In Vol. 293 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2002). | MR | Zbl
C. Dellacherie and P.A. Meyer. Probability and Potential B: Theory of Martingales. North-Holland Amsterdam (1982). | MR | Zbl
Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. | MR | Zbl | DOI
, , , and ,Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | MR | Zbl | DOI
, and ,I. Karatzas, S.E. Shreve, Steven, Brownian motion and stochastic calculus. Second edition. In Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York. | MR | Zbl
Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation. Appl. Math. Optim. 47 (2003) 253–278. | MR | Zbl | DOI
and ,Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 (2002) 1397–1465. | MR | Zbl | DOI
and ,The Bismut-Elworthy formula for backward SDEs and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Stoch. Stoch. Rep. 74 (2002) 429–464. | MR | Zbl | DOI
and ,Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004) 607–660. | MR | Zbl | DOI
and ,Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim. 51 (2005) 279–332. | MR | Zbl | DOI
and ,BSDE on an infinite horizon and elliptic PDEs in infinite dimension. NoDEA Nonlinear Differ. Equ. Appl. 14 (2007) 825–846. | MR | Zbl | DOI
and ,Semilinear Kolmogorov equations and applications to stochastic optimal control. Appl. Math. Optim. 51 (2005) 201–250. | MR | Zbl | DOI
,Infinite horizon stochastic optimal control problems with degenerate noise and elliptic equations in Hilbert spaces. Appl. Math. Optim. 55 (2007) 285–326. | MR | Zbl | DOI
,Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. | MR | Zbl | DOI
and ,E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic partial differential equations and their applications, edited by B.L. Rozowskii and R.B. Sowers. In Vol. 176 of Lect. Notes Control Inf. Sci. Springer 176 (1992). | MR | Zbl
The generalized covariation process and It formula. Stochastic Processes Appl. 59 (1995) 81–104. | MR | Zbl | DOI
and ,J. Yong and X.Y. Zhou, Stochastic controls, Hamiltonian systems and HJB equations, Applications of Mathematics. Springer, New York (1999). | MR | Zbl
Cité par Sources :