Voir la notice de l'article provenant de la source Numdam
We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any function can be approximated in [0,1] by a function that is Caputo-stationary in [0,1], with initial point . Otherwise said, Caputo-stationary functions are dense in .
Bucur, Claudia 1
@article{COCV_2017__23_4_1361_0, author = {Bucur, Claudia}, title = {Local density of {Caputo-stationary} functions in the space of smooth functions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1361--1380}, publisher = {EDP-Sciences}, volume = {23}, number = {4}, year = {2017}, doi = {10.1051/cocv/2016056}, mrnumber = {3716924}, zbl = {1396.26013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016056/} }
TY - JOUR AU - Bucur, Claudia TI - Local density of Caputo-stationary functions in the space of smooth functions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1361 EP - 1380 VL - 23 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016056/ DO - 10.1051/cocv/2016056 LA - en ID - COCV_2017__23_4_1361_0 ER -
%0 Journal Article %A Bucur, Claudia %T Local density of Caputo-stationary functions in the space of smooth functions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1361-1380 %V 23 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016056/ %R 10.1051/cocv/2016056 %G en %F COCV_2017__23_4_1361_0
Bucur, Claudia. Local density of Caputo-stationary functions in the space of smooth functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1361-1380. doi: 10.1051/cocv/2016056
Cité par Sources :