Voir la notice de l'article provenant de la source Numdam
We study the inverse of the divergence operator on a domain perforated by a system of tiny holes. We show that such inverse can be constructed on the Lebesgue space for any , with a norm independent of perforation, provided the holes are suitably small and their mutual distance suitably large. Applications are given to problems arising in homogenization of steady compressible fluid flows.
Diening, Lars 1 ; Feireisl, Eduard 2 ; Lu, Yong 3
@article{COCV_2017__23_3_851_0, author = {Diening, Lars and Feireisl, Eduard and Lu, Yong}, title = {The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible {Navier{\textendash}Stokes} system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {851--868}, publisher = {EDP-Sciences}, volume = {23}, number = {3}, year = {2017}, doi = {10.1051/cocv/2016016}, mrnumber = {3660451}, zbl = {1375.35026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016016/} }
TY - JOUR AU - Diening, Lars AU - Feireisl, Eduard AU - Lu, Yong TI - The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 851 EP - 868 VL - 23 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016016/ DO - 10.1051/cocv/2016016 LA - en ID - COCV_2017__23_3_851_0 ER -
%0 Journal Article %A Diening, Lars %A Feireisl, Eduard %A Lu, Yong %T The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 851-868 %V 23 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016016/ %R 10.1051/cocv/2016016 %G en %F COCV_2017__23_3_851_0
Diening, Lars; Feireisl, Eduard; Lu, Yong. The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 851-868. doi : 10.1051/cocv/2016016. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016016/
Solutions of the divergence operator on John domains. Adv. Math. 206 (2006) 373–401. | Zbl | MR | DOI
, and ,Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203–222. | Zbl | MR
,Homogenization of the Navier−Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1990) 209–259. | Zbl | MR | DOI
,Homogenization of the Navier−Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Ration. Mech. Anal. 113 (1990) 261–298. | Zbl | MR | DOI
,Solution of some vector analysis problems connected with operators div and grad. Tr. Sem. S.L. Soboleva 80 (1980) 5–40. In Russian. | Zbl | MR
,On weak solutions of steady Navier−Stokes equations for monatomic gas. Comment. Math. Univ. Carolin. 49 (2008) 611–632. | Zbl | MR
and ,A decomposition technique for John domains. Ann. Acad. Sci. Fenn. 35 (2010) 87–114. | Zbl | MR | DOI
, and ,Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | Zbl | MR | DOI
and ,Homogenization of stationary Navier−Stokes equations in domains with tiny holes. J. Math. Fluid Mech. 17 (2015) 381–392. | MR | Zbl | DOI
and ,On the existence of globally defined weak solutions to the Navier−Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3 (2001) 358–392. | Zbl | MR | DOI
, and ,E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser Verlag, Basel (2009). | Zbl | MR
Homogenization and singular limits for the complete Navier−Stokes−Fourier system. J. Math. Pures Appl. 94 (2010) 33–57. | Zbl | MR | DOI
, and ,Homogenization of the evolutionary Navier−-Stokes system. Manusc. Math. 149 (2016) 251–274. | MR | Zbl | DOI
, and ,The Dirichlet problem for steady viscous compressible flow in three dimensions. Journal de Mathématiques Pures et Appliquées 97 (2012) 85–97. | Zbl | MR | DOI
, and ,G.P. Galdi, An Introduction to the Mathematical Theory of the Navier−Stokes Equations: Steady-State Problems. Springer Science and Business Media (2011). | Zbl | MR
P.-L. Lions,Mathematical topics in fluid dynamics, Compressible models. Oxford Science Publication, Oxford (1998). Vol. 2. | Zbl | MR
Homogenization of the compressible Navier−Stokes equations in a porous medium. ESAIM: COCV 8 (2002) 885–906. | Zbl | MR | mathdoc-id
,Homogenization of nonstationary Navier−Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. 158 (1991) 167–179. | Zbl | MR | DOI
,A. Novotný and I. Straskraba,Introduction to the mathematical theory of compressible flow. Oxford University Press, Oxford (2004). | Zbl | MR
P. Plotnikov and J. Sokolowski, Compressible Navier−Stokes equations. Vol. 73 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]. Birkhäuser/Springer Basel AG, Basel (2012). Theory and shape optimization. | Zbl | MR
Steady 3D viscous compressible flows with adiabatic exponent . J. Math. Pures Appl. 104 (2015) 58–82. | MR | Zbl | DOI
and ,E. Sánchez-Palencia, Non homogeneous media and vibration theory. Vol. 127 of Lect. Notes Phys. Springer-Verlag (1980). | Zbl | MR
L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368–377.
Cité par Sources :