Generalized Li−Yau estimates and Huisken’s monotonicity formula
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 827-850

Voir la notice de l'article provenant de la source Numdam

We prove a generalization of the Li−Yau estimate for a broad class of second order linear parabolic equations. As a consequence, we obtain a new Cheeger−Yau inequality and a new Harnack inequality for these equations. We also prove a Hamilton−Li−Yau estimate, which is a matrix version of the Li−Yau estimate, for these equations. This results in a generalization of Huisken’s monotonicity formula for a family of evolving hypersurfaces. Finally, we also show that all these generalizations are sharp in the sense that the inequalities become equality for a family of fundamental solutions, which however different from the Gaussian heat kernels on which the equality was achieved in the classical case.

DOI : 10.1051/cocv/2016015
Classification : 58J35
Keywords: Differential Harnack inequality, monotonicity formula

Lee, Paul W.Y. 1

1 Room 216, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China.
@article{COCV_2017__23_3_827_0,
     author = {Lee, Paul W.Y.},
     title = {Generalized {Li\ensuremath{-}Yau} estimates and {Huisken{\textquoteright}s} monotonicity formula},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {827--850},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016015},
     mrnumber = {3660450},
     zbl = {1369.58018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016015/}
}
TY  - JOUR
AU  - Lee, Paul W.Y.
TI  - Generalized Li−Yau estimates and Huisken’s monotonicity formula
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 827
EP  - 850
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016015/
DO  - 10.1051/cocv/2016015
LA  - en
ID  - COCV_2017__23_3_827_0
ER  - 
%0 Journal Article
%A Lee, Paul W.Y.
%T Generalized Li−Yau estimates and Huisken’s monotonicity formula
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 827-850
%V 23
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016015/
%R 10.1051/cocv/2016015
%G en
%F COCV_2017__23_3_827_0
Lee, Paul W.Y. Generalized Li−Yau estimates and Huisken’s monotonicity formula. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 827-850. doi: 10.1051/cocv/2016015

Cité par Sources :