An optimal control problem for a Kirchhoff-type equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 773-790.

Voir la notice de l'article provenant de la source Numdam

In this paper we study a control problem for a Kirchhoff-type equation. The method to obtain first order necessary optimality conditions is the Dubovitskii–Milyoutin formalism because the classical arguments do not work. We obtain a characterization of the optimal control by a partial differential system which is solved numerically.

DOI : 10.1051/cocv/2016013
Classification : 47J05, 49J20, 49J22, 49K20
Keywords: Optimal control, optimality system, adjoint problem, Euler–Lagrange equation, Kirchhoff equation

Delgado, M. 1 ; Figueiredo, G. M. 2 ; Gayte, I. 1 ; Morales-Rodrigo, C. 1

1 Departement de Ecuaciones Diferenciales y Análisis Numérico, Faculdade de Matemáticas, Universidade de Sevilla Calle Tarfia s/n, 41012 Sevilla, Spain.
2 Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66.075-110 Belém-Pará, Brazil.
@article{COCV_2017__23_3_773_0,
     author = {Delgado, M. and Figueiredo, G. M. and Gayte, I. and Morales-Rodrigo, C.},
     title = {An optimal control problem for a {Kirchhoff-type} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {773--790},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016013},
     mrnumber = {3660448},
     zbl = {06736464},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/}
}
TY  - JOUR
AU  - Delgado, M.
AU  - Figueiredo, G. M.
AU  - Gayte, I.
AU  - Morales-Rodrigo, C.
TI  - An optimal control problem for a Kirchhoff-type equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 773
EP  - 790
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/
DO  - 10.1051/cocv/2016013
LA  - en
ID  - COCV_2017__23_3_773_0
ER  - 
%0 Journal Article
%A Delgado, M.
%A Figueiredo, G. M.
%A Gayte, I.
%A Morales-Rodrigo, C.
%T An optimal control problem for a Kirchhoff-type equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 773-790
%V 23
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/
%R 10.1051/cocv/2016013
%G en
%F COCV_2017__23_3_773_0
Delgado, M.; Figueiredo, G. M.; Gayte, I.; Morales-Rodrigo, C. An optimal control problem for a Kirchhoff-type equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 773-790. doi : 10.1051/cocv/2016013. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/

A. Arosio, On the nonlinear Timoshenko-Kirchhoff beam equation. Chin. Annal. Math. 20 (1999) 495–506. | Zbl | MR | DOI

M. Chipot and J.F. Rodrigues, On a class of nonlocal nonlinear problems. RAIRO Model. Math. Anal. Numer. 26 (1992) 447–467. | Zbl | MR | mathdoc-id | DOI

L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Berkeley (1997). | Zbl | MR

G.M. Figueiredo, C. Morales-Rodrigo, J.R. Santos Junior and A. Suárez, Study of a nonlinear Kirchhoff equation with non-homogeneous material. J. Math. Anal. Appl. 416 (2014) 597–608. | MR | Zbl | DOI

G.B. Folland, Real Analysis. Modern Techniques and Their Applications. A Wiley-Interscience publication, New York (1984). | Zbl | MR

I.V. Girsanov, Lectures on mathematical theory of extremum problems. Vol. 67 of Lectures notes in Economics and mathematical systems. Springer Verlag, Berlin (1972). | Zbl | MR

T. Gudi, Finite element method for a nonlocal problem of Kirchhoff type. SIAM J. Numer. Anal. 50 (2012) 657–668. | MR | Zbl | DOI

G. Kirchhoff, Mechanik. Teubner, Leipzig (1883).

J.L. Lions, Contrôle optimal de systèmes gouvernés par des Équations aux dérivées partielles. Dunod, Paris (1968). | Zbl | MR

J.L. Lions, On some questions in boundary value problems of Mathematical Physics, in International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977. Vol. 30 of Mathematical Studies (1978) 284–346. | Zbl | MR

H. Lou and J. Yong, Optimality conditions for semi linear elliptic equations with leading term containing control. SIAM J. Control Optim. 48 (2009) 2366–2387. | Zbl | MR | DOI

T.F. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions. Appl. Numer. Math. 47 (2003) 189–196. | Zbl | MR | DOI

T.F. Ma, Remarks on a elliptic equation of Kirchhoff type. Nonlin. Anal. 63 (2005) 1967–1977. | Zbl | DOI

T.F. Ma and J.E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16 (2003) 243–248. | Zbl | MR | DOI

R.G. Nascimento, Problemas elípticos não locais do tipo p-Kirchhoff. Doct. dissertation, Unicamp (2008).

J. Peradze, A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math. 102 (2005) 311–342. | Zbl | MR | DOI

W. Rudin, Functional Analysis. Mc Graw-Hill, Inc. (1991). | Zbl | MR

S. Walczak, Some properties of cones in normed spaces and their applications to investigating extremal problems. J. Optim. Theory Appl. 42 (1984) 561–582. | Zbl | MR | DOI

Cité par Sources :