Voir la notice de l'article provenant de la source Numdam
In this paper we study a control problem for a Kirchhoff-type equation. The method to obtain first order necessary optimality conditions is the Dubovitskii–Milyoutin formalism because the classical arguments do not work. We obtain a characterization of the optimal control by a partial differential system which is solved numerically.
Delgado, M. 1 ; Figueiredo, G. M. 2 ; Gayte, I. 1 ; Morales-Rodrigo, C. 1
@article{COCV_2017__23_3_773_0, author = {Delgado, M. and Figueiredo, G. M. and Gayte, I. and Morales-Rodrigo, C.}, title = {An optimal control problem for a {Kirchhoff-type} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {773--790}, publisher = {EDP-Sciences}, volume = {23}, number = {3}, year = {2017}, doi = {10.1051/cocv/2016013}, mrnumber = {3660448}, zbl = {06736464}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/} }
TY - JOUR AU - Delgado, M. AU - Figueiredo, G. M. AU - Gayte, I. AU - Morales-Rodrigo, C. TI - An optimal control problem for a Kirchhoff-type equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 773 EP - 790 VL - 23 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/ DO - 10.1051/cocv/2016013 LA - en ID - COCV_2017__23_3_773_0 ER -
%0 Journal Article %A Delgado, M. %A Figueiredo, G. M. %A Gayte, I. %A Morales-Rodrigo, C. %T An optimal control problem for a Kirchhoff-type equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 773-790 %V 23 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/ %R 10.1051/cocv/2016013 %G en %F COCV_2017__23_3_773_0
Delgado, M.; Figueiredo, G. M.; Gayte, I.; Morales-Rodrigo, C. An optimal control problem for a Kirchhoff-type equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 773-790. doi : 10.1051/cocv/2016013. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016013/
On the nonlinear Timoshenko-Kirchhoff beam equation. Chin. Annal. Math. 20 (1999) 495–506. | Zbl | MR | DOI
,On a class of nonlocal nonlinear problems. RAIRO Model. Math. Anal. Numer. 26 (1992) 447–467. | Zbl | MR | mathdoc-id | DOI
and ,L.C. Evans, Partial Differential Equations. Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Berkeley (1997). | Zbl | MR
Study of a nonlinear Kirchhoff equation with non-homogeneous material. J. Math. Anal. Appl. 416 (2014) 597–608. | MR | Zbl | DOI
, , and ,G.B. Folland, Real Analysis. Modern Techniques and Their Applications. A Wiley-Interscience publication, New York (1984). | Zbl | MR
I.V. Girsanov, Lectures on mathematical theory of extremum problems. Vol. 67 of Lectures notes in Economics and mathematical systems. Springer Verlag, Berlin (1972). | Zbl | MR
Finite element method for a nonlocal problem of Kirchhoff type. SIAM J. Numer. Anal. 50 (2012) 657–668. | MR | Zbl | DOI
,G. Kirchhoff, Mechanik. Teubner, Leipzig (1883).
J.L. Lions, Contrôle optimal de systèmes gouvernés par des Équations aux dérivées partielles. Dunod, Paris (1968). | Zbl | MR
J.L. Lions, On some questions in boundary value problems of Mathematical Physics, in International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977. Vol. 30 of Mathematical Studies (1978) 284–346. | Zbl | MR
Optimality conditions for semi linear elliptic equations with leading term containing control. SIAM J. Control Optim. 48 (2009) 2366–2387. | Zbl | MR | DOI
and ,Existence results and numerical solutions for a beam equation with nonlinear boundary conditions. Appl. Numer. Math. 47 (2003) 189–196. | Zbl | MR | DOI
,Remarks on a elliptic equation of Kirchhoff type. Nonlin. Anal. 63 (2005) 1967–1977. | Zbl | DOI
,Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16 (2003) 243–248. | Zbl | MR | DOI
and ,R.G. Nascimento, Problemas elípticos não locais do tipo p-Kirchhoff. Doct. dissertation, Unicamp (2008).
A numerical algorithm for the nonlinear Kirchhoff string equation. Numer. Math. 102 (2005) 311–342. | Zbl | MR | DOI
,W. Rudin, Functional Analysis. Mc Graw-Hill, Inc. (1991). | Zbl | MR
Some properties of cones in normed spaces and their applications to investigating extremal problems. J. Optim. Theory Appl. 42 (1984) 561–582. | Zbl | MR | DOI
,Cité par Sources :