A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 721-749

Voir la notice de l'article provenant de la source Numdam

In this paper, we consider the energy decay of a damped hyperbolic system of wave-wave type which is coupled through the velocities. We are interested in the asymptotic properties of the solutions of this system in the case of indirect nonlinear damping, i.e. when only one equation is directly damped by a nonlinear damping. We prove that the total energy of the whole system decays as fast as the damped single equation. Moreover, we give a one-step general explicit decay formula for arbitrary nonlinearity. Our results shows that the damping properties are fully transferred from the damped equation to the undamped one by the coupling in velocities, different from the case of couplings through displacements as shown in [F. Alabau, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015–1020; F. Alabau, P. Cannarsa and V. Komornik, J. Evol. Equ. 2 (2002) 127–150; F. Alabau, SIAM J. Control Optim. 41 (2002) 511–541; F. Alabau-Boussouira and M. Léautaud, ESAIM: COCV 18 (2012) 548–582] for the linear damping case, and in [F. Alabau-Boussouira, NoDEA 14 (2007) 643–669] for the nonlinear damping case. The proofs of our results are based on multiplier techniques, weighted nonlinear integral inequalities and the optimal-weight convexity method of [F. Alabau-Boussouira, Appl. Math. Optim. 51 (2005) 61–105; F. Alabau-Boussouira, J. Differ. Equ. 248 (2010) 1473–1517].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016011
Classification : 35L05, 35Lxx, 93D15, 93D20
Keywords: Energy decay, nonlinear damping, wave equation, plate equation, weighted nonlinear integral inequality, optimal-weight convexity method

Alabau-Boussouira, Fatiha 1 ; Wang, Zhiqiang 2 ; Yu, Lixin 3

1 IECL, Université de Lorraine and CNRS (UMR 7502), Délégation CNRS at LJLL UMR 7598, 57045 Metz, France.
2 School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai 200433, P.R. China.
3 School of Mathematics and Information Sciences, Yantai University, Yantai 264005, P.R. China.
@article{COCV_2017__23_2_721_0,
     author = {Alabau-Boussouira, Fatiha and Wang, Zhiqiang and Yu, Lixin},
     title = {A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {721--749},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2016011},
     zbl = {1362.35176},
     mrnumber = {3608100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016011/}
}
TY  - JOUR
AU  - Alabau-Boussouira, Fatiha
AU  - Wang, Zhiqiang
AU  - Yu, Lixin
TI  - A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 721
EP  - 749
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016011/
DO  - 10.1051/cocv/2016011
LA  - en
ID  - COCV_2017__23_2_721_0
ER  - 
%0 Journal Article
%A Alabau-Boussouira, Fatiha
%A Wang, Zhiqiang
%A Yu, Lixin
%T A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 721-749
%V 23
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2016011/
%R 10.1051/cocv/2016011
%G en
%F COCV_2017__23_2_721_0
Alabau-Boussouira, Fatiha; Wang, Zhiqiang; Yu, Lixin. A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 721-749. doi: 10.1051/cocv/2016011

Cité par Sources :