Instrumental variables and LSM in continuous-time parameter estimation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 427-442.

Voir la notice de l'article provenant de la source Numdam

In this paper the main goal is to compare the instrumental variables and the least squares methods applied to parameter estimation in continuous-time systems, avoiding any preliminary discretization of the process, and to analyse which method is more suitable for estimation in continuous-time under stochastic perturbations. A numerical example illustrates the effectiveness of the algorithms.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015052
Classification : 93E03, 60H10, 93E10
Keywords: Parameter estimation, continuous-time, stochastic systems, instrumental variable

Escobar, Jesica 1 ; Enqvist, Martin 2

1 School of Mechanical and Electrical Engineering, National Polytechnic Institute, Department of Control Automatics, Av. IPN Col. Lindavista 07738 Mexico City, Mexico.
2 Division of Automatic Control, University of Linköping, 581 83 Linköping, Sweden.
@article{COCV_2017__23_2_427_0,
     author = {Escobar, Jesica and Enqvist, Martin},
     title = {Instrumental variables and {LSM} in continuous-time parameter estimation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {427--442},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2015052},
     mrnumber = {3608087},
     zbl = {1358.93159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015052/}
}
TY  - JOUR
AU  - Escobar, Jesica
AU  - Enqvist, Martin
TI  - Instrumental variables and LSM in continuous-time parameter estimation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 427
EP  - 442
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015052/
DO  - 10.1051/cocv/2015052
LA  - en
ID  - COCV_2017__23_2_427_0
ER  - 
%0 Journal Article
%A Escobar, Jesica
%A Enqvist, Martin
%T Instrumental variables and LSM in continuous-time parameter estimation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 427-442
%V 23
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015052/
%R 10.1051/cocv/2015052
%G en
%F COCV_2017__23_2_427_0
Escobar, Jesica; Enqvist, Martin. Instrumental variables and LSM in continuous-time parameter estimation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 427-442. doi : 10.1051/cocv/2015052. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015052/

R. Bowden and A. Darrel, Instrumental Variables. Cambridge University Press (1984). | Zbl

I. Chairez, Differential neuro-fuzzy controller for uncertain nonlinear systems. IEEE Trans. Fuzzy Systems 21 (2013) 369–384. | DOI

J. Davila, L. Fridman and A. Levant, Second-Order Sliding-Mode Observers for Mechanical Systems. IEEE Trans. Autom. Control 50 (2005) 1785–1789. | MR | Zbl | DOI

M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall, London (1977). | Zbl | MR

C. Edwards, S. Spurgeon, Sliding Mode Control. Taylor and Francis, London (1998).

J. Escobar and A. Poznyak, Time-varying matrix estimation in stochastic continuous-time models under colored noise using LSM with forgetting factor. Int. J. Syst. Sci. 42 (2011) 2009–2020. | Zbl | MR | DOI

J. Escobar and A. Poznyak, Robust Continuous-Time Matrix Estimation under Dependent Noise Perturbations: Sliding Modes Filtering and LSM with Forgetting. Circuits Syst. Signal Process. 28 (2009) 257–282. | Zbl | MR | DOI

T. Gard, Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988). | Zbl | MR

M. Gilson, H. Garnier and Van Den P. Hof, Instrumental variable methods for continuous-time identification in closed-loop. Proc. Amer. Control Conf. 3 (2004) 2846–2851.

P. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice Hall, Englewood Cliffs, NJ (1986). | Zbl

J.-N. Juan, Applied System Identification. Prentice Hall, Englewood Cliffs, New Jersey (1994). | Zbl

X. Liu, J. Wang and W.X. Zheng, Convergence analysis of refined instrumental variable method for continuous-time system identification. IET Control Theory Appl. 5 (2011) 868–877. | MR | DOI

L. Ljung, System Identification: Theory for the User. Prentice Hall, Upper Saddle River, NJ (1999). | Zbl

M. Mossberg, High-Accuracy Instrumental Variable Identification of Continuous-Time Autoregressive Processes From Irregularly Sampled Noisy Data. IEEE Trans. Signal Process. 56 (2008) 4087–4091. | Zbl | MR | DOI

R. Pintelon and J. Schoukens, System Identification, A Frequency Domain Approach. IEEE Press (2001).

A. Poznyak, J. Escobar and Y. Shtessel, Sliding modes time varying matrix identification for stochastic systems. Int. J. Syst. Sci. 38 (2007) 847–859. | Zbl | MR | DOI

D.I. Rosas Almeida, J. Alvarez and L. Fridman, Robust observation and Identification of nDOF Lagrangian systems. Int. J. Robust Nonlin. Control 17 (2007) 842–861. | Zbl | MR | DOI

V. Utkin, Sliding Modes Control and their Applications to Variable Structure Systems. MIR (1978).

V. Utkin, Sliding Modes in Control and Optimization. Springer-Verlag, Berlin, Heidelberg (1992). | Zbl | MR

Cité par Sources :