Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 263-295.

Voir la notice de l'article provenant de la source Numdam

Optimal control problems with semilinear parabolic state equations are considered. The objective features one out of three different terms promoting various spatio-temporal sparsity patterns of the control variable. For each problem, first-order necessary optimality conditions, as well as second-order necessary and sufficient optimality conditions are proved. The analysis includes the case in which the objective does not contain the squared norm of the control.

DOI : 10.1051/cocv/2015048
Classification : 49K20, 49J52, 35K58, 65K10
Keywords: Optimal control, directional sparsity, second-order optimality conditions, semilinear parabolic equations

Casas, Eduardo 1 ; Herzog, Roland 2 ; Wachsmuth, Gerd 2

1 Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.
2 Technische Universität Chemnitz, Faculty of Mathematics, Professorship Numerical Methods (Partial Differential Equations), 09107 Chemnitz, Germany.
@article{COCV_2017__23_1_263_0,
     author = {Casas, Eduardo and Herzog, Roland and Wachsmuth, Gerd},
     title = {Analysis of {Spatio-Temporally} {Sparse} {Optimal} {Control} {Problems} of {Semilinear} {Parabolic} {Equations}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {263--295},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015048},
     mrnumber = {3601024},
     zbl = {1479.49047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015048/}
}
TY  - JOUR
AU  - Casas, Eduardo
AU  - Herzog, Roland
AU  - Wachsmuth, Gerd
TI  - Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 263
EP  - 295
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015048/
DO  - 10.1051/cocv/2015048
LA  - en
ID  - COCV_2017__23_1_263_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%A Herzog, Roland
%A Wachsmuth, Gerd
%T Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 263-295
%V 23
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015048/
%R 10.1051/cocv/2015048
%G en
%F COCV_2017__23_1_263_0
Casas, Eduardo; Herzog, Roland; Wachsmuth, Gerd. Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 263-295. doi : 10.1051/cocv/2015048. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015048/

J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research. Springer-Verlag, New York (2000). | MR | Zbl

E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | MR | Zbl | DOI

E. Casas, Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50 (2012) 2355–2372. | MR | Zbl | DOI

E. Casas and K. Kunisch, Optimal Control of Semilinear Elliptic Equations in Measure Spaces. SIAM J. Control Optim. 52 (2014) 339–364. | MR | Zbl | DOI

E. Casas, R. Herzog, and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L 1 cost functional. SIAM J. Optim. 22 (2012) 795–820. | MR | Zbl | DOI

E. Casas, C. Clason, and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | MR | Zbl | DOI

J. Dunn, On second order sufficient optimality conditions for structured nonlinear programs in infinite-dimensional function spaces, in Mathematical Programming with Data Perturbations, edited by A. Fiacco. Marcel Dekker (1998) 83–107. | MR | Zbl

R.E. Edwards, Functional analysis. Theory and applications, Corrected reprint of the 1965 original. Dover Publications Inc., New York (1995). | MR

I. Ekeland and R. Temam, Convex Analysis and Variational Problems. In vol. 28 of Classics in Applied Mathematics. SIAM, Philadelphia (1999). | MR | Zbl

R. Herzog, J. Obermeier, and G. Wachsmuth, Annular and sectorial sparsity in optimal control of elliptic equations. Comput. Optim. Appl. 62 (2015) 157–180. | MR | Zbl | DOI

R. Herzog, G. Stadler, and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. | MR | Zbl | DOI

A.D. Ioffe and V.M. Tichomirov, Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). | MR | Zbl

K. Kunisch, K. Pieper, and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | MR | Zbl | DOI

J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967). | MR | Zbl

G. Stadler, Elliptic optimal control problems with L 1 -control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. | MR | Zbl | DOI

Cité par Sources :