Optimal control of elliptic equations with positive measures
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 217-240

Voir la notice de l'article provenant de la source Numdam

Optimal control problems without control costs in general do not possess solutions due to the lack of coercivity. However, unilateral constraints together with the assumption of existence of strictly positive solutions of a pre-adjoint state equation, are sufficient to obtain existence of optimal solutions in the space of Radon measures. Optimality conditions for these generalized minimizers can be obtained using Fenchel duality, which requires a non-standard perturbation approach if the control-to-observation mapping is not continuous (e.g., for Neumann boundary control in three dimensions). Combining a conforming discretization of the measure space with a semismooth Newton method allows the numerical solution of the optimal control problem.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015046
Classification : 49J20, 49K20, 49N15
Keywords: Optimal control, measure control, control constraints, Fenchel duality, unbounded operators

Clason, Christian 1 ; Schiela, Anton 2

1 Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Germany.
2 Institute of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany.
@article{COCV_2017__23_1_217_0,
     author = {Clason, Christian and Schiela, Anton},
     title = {Optimal control of elliptic equations with positive measures},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {217--240},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015046},
     mrnumber = {3601022},
     zbl = {1365.49005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015046/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Schiela, Anton
TI  - Optimal control of elliptic equations with positive measures
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 217
EP  - 240
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015046/
DO  - 10.1051/cocv/2015046
LA  - en
ID  - COCV_2017__23_1_217_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Schiela, Anton
%T Optimal control of elliptic equations with positive measures
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 217-240
%V 23
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015046/
%R 10.1051/cocv/2015046
%G en
%F COCV_2017__23_1_217_0
Clason, Christian; Schiela, Anton. Optimal control of elliptic equations with positive measures. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 217-240. doi: 10.1051/cocv/2015046

Cité par Sources :