Voir la notice de l'article provenant de la source Numdam
The Gilbert−Steiner problem is a mass transportation problem, where the cost of the transportation depends on the network used to move the mass and it is proportional to a certain power of the “flow”. In this paper, we introduce a new formulation of the problem, which turns it into the minimization of a convex functional in a class of currents with coefficients in a group. This framework allows us to define calibrations. We apply this technique to prove the optimality of a certain irrigation network in the separable Hilbert space , having countably many branching points and a continuous amount of endpoints.
Marchese, Andrea 1 ; Massaccesi, Annalisa 2
@article{COCV_2016__22_2_543_0, author = {Marchese, Andrea and Massaccesi, Annalisa}, title = {An optimal irrigation network with infinitely many branching points}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {543--561}, publisher = {EDP-Sciences}, volume = {22}, number = {2}, year = {2016}, doi = {10.1051/cocv/2015028}, zbl = {1343.49074}, mrnumber = {3491783}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015028/} }
TY - JOUR AU - Marchese, Andrea AU - Massaccesi, Annalisa TI - An optimal irrigation network with infinitely many branching points JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 543 EP - 561 VL - 22 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015028/ DO - 10.1051/cocv/2015028 LA - en ID - COCV_2016__22_2_543_0 ER -
%0 Journal Article %A Marchese, Andrea %A Massaccesi, Annalisa %T An optimal irrigation network with infinitely many branching points %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 543-561 %V 22 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015028/ %R 10.1051/cocv/2015028 %G en %F COCV_2016__22_2_543_0
Marchese, Andrea; Massaccesi, Annalisa. An optimal irrigation network with infinitely many branching points. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 543-561. doi: 10.1051/cocv/2015028
Cité par Sources :