An optimal irrigation network with infinitely many branching points
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 543-561

Voir la notice de l'article provenant de la source Numdam

The Gilbert−Steiner problem is a mass transportation problem, where the cost of the transportation depends on the network used to move the mass and it is proportional to a certain power of the “flow”. In this paper, we introduce a new formulation of the problem, which turns it into the minimization of a convex functional in a class of currents with coefficients in a group. This framework allows us to define calibrations. We apply this technique to prove the optimality of a certain irrigation network in the separable Hilbert space 2 , having countably many branching points and a continuous amount of endpoints.

Reçu le :
DOI : 10.1051/cocv/2015028
Classification : 49Q15, 49Q20, 49N60, 53C38
Keywords: Gilbert−Steiner problem, irrigation problem, calibrations, flatG-chains

Marchese, Andrea 1 ; Massaccesi, Annalisa 2

1 Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, 04103 Leipzig, Germany
2 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
@article{COCV_2016__22_2_543_0,
     author = {Marchese, Andrea and Massaccesi, Annalisa},
     title = {An optimal irrigation network with infinitely many branching points},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {543--561},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015028},
     zbl = {1343.49074},
     mrnumber = {3491783},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015028/}
}
TY  - JOUR
AU  - Marchese, Andrea
AU  - Massaccesi, Annalisa
TI  - An optimal irrigation network with infinitely many branching points
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 543
EP  - 561
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015028/
DO  - 10.1051/cocv/2015028
LA  - en
ID  - COCV_2016__22_2_543_0
ER  - 
%0 Journal Article
%A Marchese, Andrea
%A Massaccesi, Annalisa
%T An optimal irrigation network with infinitely many branching points
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 543-561
%V 22
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015028/
%R 10.1051/cocv/2015028
%G en
%F COCV_2016__22_2_543_0
Marchese, Andrea; Massaccesi, Annalisa. An optimal irrigation network with infinitely many branching points. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 543-561. doi: 10.1051/cocv/2015028

Cité par Sources :