Zero dynamics and funnel control of general linear differential-algebraic systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 371-403

Voir la notice de l'article provenant de la source Numdam

We study linear differential-algebraic multi-input multi-output systems which are not necessarily regular and investigate the zero dynamics and tracking control. We introduce and characterize the concept of autonomous zero dynamics as an important system theoretic tool for the analysis of differential-algebraic systems. We use the autonomous zero dynamics and (E,A,B)-invariant subspaces to derive the so called zero dynamics form – which decouples the zero dynamics of the system – and exploit it for the characterization of system invertibility and asymptotic stability of the zero dynamics. A refinement of the zero dynamics form is then used to show that the funnel controller (that is a static nonlinear output error feedback) achieves – for a special class of right-invertible systems with asymptotically stable zero dynamics – tracking of a reference signal by the output signal within a pre-specified performance funnel. It is shown that the results can be applied to a class of passive electrical networks.

Reçu le :
DOI : 10.1051/cocv/2015010
Classification : 15A22, 15A21, 34A09, 34A30, 93D15
Keywords: Differential-algebraic systems, zero dynamics, invariant subspaces, system inversion, funnel control, relative degree

Berger, Thomas 1

1 Universität Hamburg, Fachbereich Mathematik, Bundesstraße 55, 20146 Hamburg, Germany
@article{COCV_2016__22_2_371_0,
     author = {Berger, Thomas},
     title = {Zero dynamics and funnel control of general linear differential-algebraic systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {371--403},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015010},
     mrnumber = {3491775},
     zbl = {1342.34018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015010/}
}
TY  - JOUR
AU  - Berger, Thomas
TI  - Zero dynamics and funnel control of general linear differential-algebraic systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 371
EP  - 403
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015010/
DO  - 10.1051/cocv/2015010
LA  - en
ID  - COCV_2016__22_2_371_0
ER  - 
%0 Journal Article
%A Berger, Thomas
%T Zero dynamics and funnel control of general linear differential-algebraic systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 371-403
%V 22
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015010/
%R 10.1051/cocv/2015010
%G en
%F COCV_2016__22_2_371_0
Berger, Thomas. Zero dynamics and funnel control of general linear differential-algebraic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 371-403. doi: 10.1051/cocv/2015010

Cité par Sources :