Voir la notice de l'article provenant de la source Numdam
Consider the classical solutions of the abstract approximate problems
given by , where generates a sequence of -semigroups of operators on the Hilbert spaces . Classical solutions of this problem may converge to polynomially, but not exponentially, in the following sense
for some constants and . This paper has two objectives. First, necessary and sufficient conditions are given to characterize the uniform polynomial stability of the sequence on Hilbert spaces . Secondly, approximation in control of a one-dimensional hyperbolic-parabolic coupled system subject to Dirichlet−Dirichlet boundary conditions, is considered. The uniform polynomial stability of corresponding semigroups associated with approximation schemes is proved. Numerical experimental results are also presented.
Maniar, L. 1 ; Nafiri, S. 1
@article{COCV_2016__22_1_208_0, author = {Maniar, L. and Nafiri, S.}, title = {Approximation and uniform polynomial stability of {C}$_{0}$-semigroups}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {208--235}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2015002}, zbl = {1348.93227}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/} }
TY - JOUR AU - Maniar, L. AU - Nafiri, S. TI - Approximation and uniform polynomial stability of C$_{0}$-semigroups JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 208 EP - 235 VL - 22 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/ DO - 10.1051/cocv/2015002 LA - en ID - COCV_2016__22_1_208_0 ER -
%0 Journal Article %A Maniar, L. %A Nafiri, S. %T Approximation and uniform polynomial stability of C$_{0}$-semigroups %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 208-235 %V 22 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/ %R 10.1051/cocv/2015002 %G en %F COCV_2016__22_1_208_0
Maniar, L.; Nafiri, S. Approximation and uniform polynomial stability of C$_{0}$-semigroups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 208-235. doi: 10.1051/cocv/2015002
Cité par Sources :