Approximation and uniform polynomial stability of C 0 -semigroups
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 208-235

Voir la notice de l'article provenant de la source Numdam

Consider the classical solutions of the abstract approximate problems

        x n ' (t)=A n x n (t),t0,x n (0)=x 0n ,n,

given by x n (t)=T n (t)x 0n ,t0,x 0n D(A n ), where A n generates a sequence of C 0 -semigroups of operators T n (t) on the Hilbert spaces H n . Classical solutions of this problem may converge to 0 polynomially, but not exponentially, in the following sense

        T n (t)xC n t -β A n α x,xD(A n α ),t>0,n,

for some constants C n ,α and β>0. This paper has two objectives. First, necessary and sufficient conditions are given to characterize the uniform polynomial stability of the sequence T n (t) on Hilbert spaces H n . Secondly, approximation in control of a one-dimensional hyperbolic-parabolic coupled system subject to Dirichlet−Dirichlet boundary conditions, is considered. The uniform polynomial stability of corresponding semigroups associated with approximation schemes is proved. Numerical experimental results are also presented.

DOI : 10.1051/cocv/2015002
Classification : 93C20, 93D20, 73C25, 65M06, 65M60, 65M70
Keywords: C0-semigroups, resolvent, uniform polynomial stability

Maniar, L. 1 ; Nafiri, S. 1

1 Département de Mathématiques, Faculté des Sciences Semlalia, Laboratoire LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, B.P. 2390, 40000 Marrakesh, Morocco.
@article{COCV_2016__22_1_208_0,
     author = {Maniar, L. and Nafiri, S.},
     title = {Approximation and uniform polynomial stability of {C}$_{0}$-semigroups},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {208--235},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2015002},
     zbl = {1348.93227},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/}
}
TY  - JOUR
AU  - Maniar, L.
AU  - Nafiri, S.
TI  - Approximation and uniform polynomial stability of C$_{0}$-semigroups
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 208
EP  - 235
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/
DO  - 10.1051/cocv/2015002
LA  - en
ID  - COCV_2016__22_1_208_0
ER  - 
%0 Journal Article
%A Maniar, L.
%A Nafiri, S.
%T Approximation and uniform polynomial stability of C$_{0}$-semigroups
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 208-235
%V 22
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/
%R 10.1051/cocv/2015002
%G en
%F COCV_2016__22_1_208_0
Maniar, L.; Nafiri, S. Approximation and uniform polynomial stability of C$_{0}$-semigroups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 208-235. doi: 10.1051/cocv/2015002

Cité par Sources :