Approximation and uniform polynomial stability of C 0 -semigroups
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 208-235.

Voir la notice de l'article provenant de la source Numdam

Consider the classical solutions of the abstract approximate problems

        x n ' (t)=A n x n (t),t0,x n (0)=x 0n ,n,

given by x n (t)=T n (t)x 0n ,t0,x 0n D(A n ), where A n generates a sequence of C 0 -semigroups of operators T n (t) on the Hilbert spaces H n . Classical solutions of this problem may converge to 0 polynomially, but not exponentially, in the following sense

        T n (t)xC n t -β A n α x,xD(A n α ),t>0,n,

for some constants C n ,α and β>0. This paper has two objectives. First, necessary and sufficient conditions are given to characterize the uniform polynomial stability of the sequence T n (t) on Hilbert spaces H n . Secondly, approximation in control of a one-dimensional hyperbolic-parabolic coupled system subject to Dirichlet−Dirichlet boundary conditions, is considered. The uniform polynomial stability of corresponding semigroups associated with approximation schemes is proved. Numerical experimental results are also presented.

DOI : 10.1051/cocv/2015002
Classification : 93C20, 93D20, 73C25, 65M06, 65M60, 65M70
Keywords: C0-semigroups, resolvent, uniform polynomial stability

Maniar, L. 1 ; Nafiri, S. 1

1 Département de Mathématiques, Faculté des Sciences Semlalia, Laboratoire LMDP, UMMISCO (IRD-UPMC), Université Cadi Ayyad, B.P. 2390, 40000 Marrakesh, Morocco.
@article{COCV_2016__22_1_208_0,
     author = {Maniar, L. and Nafiri, S.},
     title = {Approximation and uniform polynomial stability of {C}$_{0}$-semigroups},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {208--235},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2015002},
     zbl = {1348.93227},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/}
}
TY  - JOUR
AU  - Maniar, L.
AU  - Nafiri, S.
TI  - Approximation and uniform polynomial stability of C$_{0}$-semigroups
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 208
EP  - 235
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/
DO  - 10.1051/cocv/2015002
LA  - en
ID  - COCV_2016__22_1_208_0
ER  - 
%0 Journal Article
%A Maniar, L.
%A Nafiri, S.
%T Approximation and uniform polynomial stability of C$_{0}$-semigroups
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 208-235
%V 22
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/
%R 10.1051/cocv/2015002
%G en
%F COCV_2016__22_1_208_0
Maniar, L.; Nafiri, S. Approximation and uniform polynomial stability of C$_{0}$-semigroups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 208-235. doi : 10.1051/cocv/2015002. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2015002/

F. Abdallah, S. Nicaise, J. Valein and A. Wehbe, Stability results for the approximation of weakly coupled wave equations. C. R. Math. Acad. Sci. Paris 350 (2012) 29–34. | Zbl | MR | DOI

F. Ammar-Khodja, A. Benabdallah and D. Teniou, Dynamical stabilizers and coupled systems. ESAIM Proc. 2 (1997) 253–262. | Zbl | MR | DOI

H.T. Banks, K. Ito and C. Wang, Exponentially stable approximations of weakly damped wave equations. Int. Ser. Numerical Anal. (1991) 1–33. | Zbl | MR

A. Bátkai, K.J. Engel, J. Prüss and R. Schnaubelt, Polynomial stability of operator semigroups. Math. Nachr. 279 (2006) 1425–1440. | Zbl | MR | DOI

C.J.K. Batty and T. Duyckaerts, Non-uniform stability for bounded semigroups on Banach spaces. J. Evol. Equ. 8 (2008) 765–780. | Zbl | MR | DOI

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2009) 455–478. | Zbl | MR | DOI

K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Encycl. Math. Appl. Springer-Verlag, New York (2000). | Zbl | MR

R.H. Fabiano, Galerkin Approximation for Thermoelastic Models. Proc. of the American Control Conference (2000) 2755–2759.

R.H. Fabiano, Stability preserving Galerkin approximations for a boundary damped wave equation. Proc. of the Third World Congress of Nonlinear Analysts 47 (2001) 4545-4556. | Zbl | MR

R.H. Fabiano, A renorming method for thermoelastic models. SIAM/SEAS. Appl. Anal. 77 (2001) 61–75. | Zbl | MR | DOI

R.H. Fabiano, Stability and Galerkin Approximation in Thermoelastic Models. Proc. of the American Control Conference (2005) 2481–2486.

R. Glowinski, C.H. Li and J.L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7 (1990) 1–76. | Zbl | MR | DOI

J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations. ZAMP 64 (2013) 1145–1159. | Zbl | MR

F.L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. | Zbl | MR

S.Z. Huang and J.M.A.M Van Neerven, B-convexity, the analytic Radon-Nikodym property and individual stability of C 0 -semigroups. J. Math. Anal. Appl. 231 (1999) 1–20. | Zbl | MR | DOI

J.A. Infante and E. Zuazua, Boundary observability for the space-discretizations of the 1-d wave equation. C.R. Acad. Sci. Paris 326 (1998) 713–718. | Zbl | MR | DOI

E. Isaacson and H.B. Keller, Analysis of Numerical Methods. John Wiley & Sons (1966). | Zbl | MR

Y. Latushkin and R. Shvydkoy, Hyperbolicity of semigroups and Fourier multipliers. In Systems, approximation, singular integral operators, and related topics. Bordeaux, 2000. Vol. 129 of Oper. Theory Adv. Appl. (2001) 341–363. | Zbl | MR

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. U. Phys. ZAMP 56 (2005) 630–644. | Zbl | MR | DOI

Z.Y. Liu and S.M. Zheng, Exponential stability of semigroup associated with thermoelastic system. Quart. Appl. Math. 51 (1993) 535–545. | Zbl | MR | DOI

Z.Y. Liu and S. Zheng, Uniform exponential stability and approximation in control of a thermoelastic system. SIAM J. Control Optim. 32 (1994) 1226–1246. | Zbl | MR | DOI

Z.Y. Liu and S. Zheng, Semigroups Associated with Dissipative Systems. In Research Notes Math. Ser. Chapman Hall/CRC (1999). | Zbl | MR

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Vol. 44 of Appl. Math. Sci. Springer-Verlag, New York (1983). | Zbl

K. Ramdani, T. Takahashi and M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations. ESAIM: COCV 13 (2007) 503–527. | Zbl | mathdoc-id

A. Tikhonov, Ein Fixpunktsatz. Math. Ann. 111 (1935) 767–776. | JFM | Zbl | DOI

G. Weiss. The resolvent growth assumption for semigroups on Hilbert spaces. J. Math. Anal. Appl. 145 (1990) 154–171. | Zbl | DOI

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. | Zbl | DOI

Cité par Sources :