Voir la notice de l'article provenant de la source Numdam
A recurring obstacle in the study of Wasserstein gradient flow is the lack of convexity of the square Wasserstein metric. In this paper, we develop a class of transport metrics that have better convexity properties and use these metrics to prove an Euler−Lagrange equation characterizing Wasserstein discrete gradient flow. We then apply these results to give a new proof of the exponential formula for the Wasserstein metric, mirroring Crandall and Liggett’s proof of the corresponding Banach space result [M.G. Crandall and T.M. Liggett, Amer. J. Math. 93 (1971) 265–298]. We conclude by using our approach to give simple proofs of properties of the gradient flow, including the contracting semigroup property and energy dissipation inequality.
Craig, Katy 1
@article{COCV_2016__22_1_169_0, author = {Craig, Katy}, title = {The exponential formula for the wasserstein metric}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {169--187}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2014069}, zbl = {1338.47071}, mrnumber = {3489381}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014069/} }
TY - JOUR AU - Craig, Katy TI - The exponential formula for the wasserstein metric JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 169 EP - 187 VL - 22 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014069/ DO - 10.1051/cocv/2014069 LA - en ID - COCV_2016__22_1_169_0 ER -
%0 Journal Article %A Craig, Katy %T The exponential formula for the wasserstein metric %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 169-187 %V 22 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014069/ %R 10.1051/cocv/2014069 %G en %F COCV_2016__22_1_169_0
Craig, Katy. The exponential formula for the wasserstein metric. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 169-187. doi: 10.1051/cocv/2014069
Cité par Sources :