The exponential formula for the wasserstein metric
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 169-187

Voir la notice de l'article provenant de la source Numdam

A recurring obstacle in the study of Wasserstein gradient flow is the lack of convexity of the square Wasserstein metric. In this paper, we develop a class of transport metrics that have better convexity properties and use these metrics to prove an Euler−Lagrange equation characterizing Wasserstein discrete gradient flow. We then apply these results to give a new proof of the exponential formula for the Wasserstein metric, mirroring Crandall and Liggett’s proof of the corresponding Banach space result [M.G. Crandall and T.M. Liggett, Amer. J. Math. 93 (1971) 265–298]. We conclude by using our approach to give simple proofs of properties of the gradient flow, including the contracting semigroup property and energy dissipation inequality.

Reçu le :
DOI : 10.1051/cocv/2014069
Classification : 47J, 49K, 49J
Keywords: Wasserstein metric, gradient flow, exponential formula

Craig, Katy 1

1 Dept. of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA.
@article{COCV_2016__22_1_169_0,
     author = {Craig, Katy},
     title = {The exponential formula for the wasserstein metric},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {169--187},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2014069},
     zbl = {1338.47071},
     mrnumber = {3489381},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014069/}
}
TY  - JOUR
AU  - Craig, Katy
TI  - The exponential formula for the wasserstein metric
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 169
EP  - 187
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014069/
DO  - 10.1051/cocv/2014069
LA  - en
ID  - COCV_2016__22_1_169_0
ER  - 
%0 Journal Article
%A Craig, Katy
%T The exponential formula for the wasserstein metric
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 169-187
%V 22
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014069/
%R 10.1051/cocv/2014069
%G en
%F COCV_2016__22_1_169_0
Craig, Katy. The exponential formula for the wasserstein metric. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 169-187. doi: 10.1051/cocv/2014069

Cité par Sources :