Boundary effects and weak lower semicontinuity for signed integral functionals on BV
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 513-534.

Voir la notice de l'article provenant de la source Numdam

We characterize lower semicontinuity of integral functionals with respect to weak convergence in BV, including integrands whose negative part has linear growth. In addition, we allow for sequences without a fixed trace at the boundary. In this case, both the integrand and the shape of the boundary play a key role. This is made precise in our newly found condition – quasi-sublinear growth from below at points of the boundary – which compensates for possible concentration effects generated by the sequence. Our work extends some recent results by Kristensen and Rindler [J. Kristensen and F. Rindler, Arch. Rat. Mech. Anal. 197 (2010) 539–598; J. Kristensen and F. Rindler, Calc. Var. 37 (2010) 29–62].

Reçu le :
DOI : 10.1051/cocv/2014036
Classification : 49J45, 26B30, 52A99
Keywords: Lower semicontinuity, BV, quasiconvexity, free boundary

Benešová, Barbora 1 ; Krömer, Stefan 2 ; Kružík, Martin 3, 4

1 Department of Mathematics I, RWTH Aachen University, 52056 Aachen, Germany.
2 Math. Inst., Universität zu Köln, 50923 Köln, Germany.
3 Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 18208 Praha 8, Czech Republic.
4 Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 16629 Praha 6, Czech Republic.
@article{COCV_2015__21_2_513_0,
     author = {Bene\v{s}ov\'a, Barbora and Kr\"omer, Stefan and Kru\v{z}{\'\i}k, Martin},
     title = {Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {513--534},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014036},
     zbl = {1318.49022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014036/}
}
TY  - JOUR
AU  - Benešová, Barbora
AU  - Krömer, Stefan
AU  - Kružík, Martin
TI  - Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 513
EP  - 534
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014036/
DO  - 10.1051/cocv/2014036
LA  - en
ID  - COCV_2015__21_2_513_0
ER  - 
%0 Journal Article
%A Benešová, Barbora
%A Krömer, Stefan
%A Kružík, Martin
%T Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 513-534
%V 21
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014036/
%R 10.1051/cocv/2014036
%G en
%F COCV_2015__21_2_513_0
Benešová, Barbora; Krömer, Stefan; Kružík, Martin. Boundary effects and weak$^{\star{}}$ lower semicontinuity for signed integral functionals on $BV$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 513-534. doi : 10.1051/cocv/2014036. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014036/

E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125–145. | Zbl | DOI

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford, 2000. | Zbl

M. Baía, M. Chermisi, J. Matias and P.M. Santos, Lower semicontinuity and relaxation of signed functionals with linear growth in the context of 𝒜-quasiconvexity. Calc. Var. Partial Differ. Equ. 47 (2013) 465–498. | Zbl | DOI

J.M. Ball and J.E. Marsden, Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86 (1984) 251–277. | Zbl | DOI

L. Beck and T. Schmidt, On the Dirichlet problem for variational integrals in BV. J. Reine Angew. Math. 674 (2013) 113–194. | Zbl

I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L 1 . SIAM J. Math. Anal. 23 (1992) 1081–1098. | Zbl | DOI

I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,R N ) for integrands f(x,u,u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. | Zbl | DOI

I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. | Zbl | DOI

A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. | Zbl | mathdoc-id

A. Kałamajska, S. Krömer and M. Kružík, Sequential weak continuity of null lagrangians at the boundary. Calc. Var. Partial Differ. Equ. 49 (2014) 1263–1278. | Zbl | DOI

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in W 1,1 and BV. Arch. Ration. Mech. Anal. 197 (2010) 539–598. | Zbl | DOI

J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mat-report 1994-34, Math. Institute, Technical University of Denmark, 1994.

J. Kristensen and F. Rindler, Relaxation of signed integral functionals in BV. Calc. Var. Partial Differ. Equ. 37 (2010) 29–62. | Zbl | DOI

S. Krömer and M. Kružík, Oscillations and concentrations in sequences of gradients up to the boundary. J. Convex Anal. 20 (2013) 723–752. | Zbl

Stefan Krömer, On the role of lower bounds in characterizations of weak lower semicontinuity of multiple integrals. Adv. Calc. Var. 3 (2010) 387–408. | Zbl

M. Kružík, Quasiconvexity at the boundary and concentration effects generated by gradients. ESAIM: COCV 19 (2013) 679–700. | Zbl | mathdoc-id

A. Mielke and P. Sprenger, Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elasticity 51 (1998) 23–41. | Zbl | DOI

C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2 (1952) 25–53. | Zbl | DOI

F. Rindler and G. Shaw, Strictly continuous extensions and convex lower semicontinuity of functionals with linear growth. Preprint arXiv:1312.4554v2 [math.AP] (2013).

P. Sprenger, Quasikonvexität am Rande und Null-Lagrange-Funktionen in der nichtkonvexen Variationsrechnung. Ph.D. thesis, Universität Hannover (1996). | Zbl

Cité par Sources :