Shape derivative of the Cheeger constant
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 348-358
Voir la notice de l'article provenant de la source Numdam
This paper deals with the existence of the shape derivative of the Cheeger constant of a bounded domain . We prove that if admits a unique Cheeger set, then the shape derivative of exists, and we provide an explicit formula. A counter-example shows that the shape derivative may not exist without the uniqueness assumption.
Reçu le :
DOI : 10.1051/cocv/2014018
DOI : 10.1051/cocv/2014018
Classification :
49Q10, 49Q20
Keywords: Shape derivative, CHEEGER constant, 1-Laplacian
Keywords: Shape derivative, CHEEGER constant, 1-Laplacian
Affiliations des auteurs :
Parini, Enea 1 ; Saintier, Nicolas 2, 3
@article{COCV_2015__21_2_348_0,
author = {Parini, Enea and Saintier, Nicolas},
title = {Shape derivative of the {Cheeger} constant},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {348--358},
publisher = {EDP-Sciences},
volume = {21},
number = {2},
year = {2015},
doi = {10.1051/cocv/2014018},
mrnumber = {3348401},
zbl = {1315.49018},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014018/}
}
TY - JOUR AU - Parini, Enea AU - Saintier, Nicolas TI - Shape derivative of the Cheeger constant JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 348 EP - 358 VL - 21 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014018/ DO - 10.1051/cocv/2014018 LA - en ID - COCV_2015__21_2_348_0 ER -
%0 Journal Article %A Parini, Enea %A Saintier, Nicolas %T Shape derivative of the Cheeger constant %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 348-358 %V 21 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2014018/ %R 10.1051/cocv/2014018 %G en %F COCV_2015__21_2_348_0
Parini, Enea; Saintier, Nicolas. Shape derivative of the Cheeger constant. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 348-358. doi: 10.1051/cocv/2014018
Cité par Sources :