Exact null internal controllability for the heat equation on unbounded convex domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 222-235

Voir la notice de l'article provenant de la source Numdam

The linear parabolic equation y t - 1 2 Δ y + F · y = 1 𝒪 0 u with Neumann boundary condition on a convex open domain 𝒪 d with smooth boundary is exactly null controllable on each finite interval if 𝒪 0 is an open subset of 𝒪 which contains a suitable neighbourhood of the recession cone of 𝒪 ¯ . Here, F : d d is a bounded, C 1 -continuous function, and F = g where g is convex and coercive.

DOI : 10.1051/cocv/2013062
Classification : 93B07, 35K50, 47D07
@article{COCV_2014__20_1_222_0,
     author = {Barbu, Viorel},
     title = {Exact null internal controllability for the heat equation on unbounded convex domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {222--235},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013062},
     mrnumber = {3182698},
     zbl = {1282.93046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013062/}
}
TY  - JOUR
AU  - Barbu, Viorel
TI  - Exact null internal controllability for the heat equation on unbounded convex domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 222
EP  - 235
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013062/
DO  - 10.1051/cocv/2013062
LA  - en
ID  - COCV_2014__20_1_222_0
ER  - 
%0 Journal Article
%A Barbu, Viorel
%T Exact null internal controllability for the heat equation on unbounded convex domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 222-235
%V 20
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013062/
%R 10.1051/cocv/2013062
%G en
%F COCV_2014__20_1_222_0
Barbu, Viorel. Exact null internal controllability for the heat equation on unbounded convex domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 222-235. doi: 10.1051/cocv/2013062

Cité par Sources :