Voir la notice de l'article provenant de la source Numdam
The linear parabolic equation with Neumann boundary condition on a convex open domain with smooth boundary is exactly null controllable on each finite interval if is an open subset of which contains a suitable neighbourhood of the recession cone of . Here, is a bounded, -continuous function, and where is convex and coercive.
@article{COCV_2014__20_1_222_0, author = {Barbu, Viorel}, title = {Exact null internal controllability for the heat equation on unbounded convex domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {222--235}, publisher = {EDP-Sciences}, volume = {20}, number = {1}, year = {2014}, doi = {10.1051/cocv/2013062}, mrnumber = {3182698}, zbl = {1282.93046}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013062/} }
TY - JOUR AU - Barbu, Viorel TI - Exact null internal controllability for the heat equation on unbounded convex domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 222 EP - 235 VL - 20 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013062/ DO - 10.1051/cocv/2013062 LA - en ID - COCV_2014__20_1_222_0 ER -
%0 Journal Article %A Barbu, Viorel %T Exact null internal controllability for the heat equation on unbounded convex domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 222-235 %V 20 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013062/ %R 10.1051/cocv/2013062 %G en %F COCV_2014__20_1_222_0
Barbu, Viorel. Exact null internal controllability for the heat equation on unbounded convex domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 222-235. doi: 10.1051/cocv/2013062
Cité par Sources :