Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 141-157

Voir la notice de l'article provenant de la source Numdam

We prove uniform continuity of radially symmetric vector minimizers u A ( x ) = U A ( | x | ) to multiple integrals B R L * * ( u ( x ) , | D u ( x ) | ) d x on a ball B R d , among the Sobolev functions u ( · ) in A + W 0 1 , 1 ( B R , m ) , using a jointly convex lsc L * * : m × [ 0 , ] with L * * ( S , · ) even and superlinear. Besides such basic hypotheses, L * * ( · , · ) is assumed to satisfy also a geometrical constraint, which we call quasi - scalar; the simplest example being the biradial case L * * ( | u ( x ) | , | D u ( x ) | ) . Complete liberty is given for L * * ( S , λ ) to take the value, so that our minimization problem implicitly also represents e.g. distributed-parameter optimal control problems, on constrained domains, under PDEs or inclusions in explicit or implicit form. While generic radial functions u ( x ) = U ( | x | ) in this Sobolev space oscillate wildly as | x | 0 , our minimizing profile-curve U A ( · ) is, in contrast, absolutely continuous and tame, in the sense that its “static level L * * ( U A ( r ) , 0 ) always increases with r, a original feature of our result.

DOI : 10.1051/cocv/2013058
Classification : 49J10, 49N60
Keywords: vectorial calculus of variations, vectorial distributed-parameter optimal control, continuous radially symmetric monotone minimizers
@article{COCV_2014__20_1_141_0,
     author = {Bicho, Lu{\'\i}s Balsa and Ornelas, Ant\'onio},
     title = {Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {141--157},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013058},
     mrnumber = {3182694},
     zbl = {1286.49040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013058/}
}
TY  - JOUR
AU  - Bicho, Luís Balsa
AU  - Ornelas, António
TI  - Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 141
EP  - 157
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013058/
DO  - 10.1051/cocv/2013058
LA  - en
ID  - COCV_2014__20_1_141_0
ER  - 
%0 Journal Article
%A Bicho, Luís Balsa
%A Ornelas, António
%T Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 141-157
%V 20
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013058/
%R 10.1051/cocv/2013058
%G en
%F COCV_2014__20_1_141_0
Bicho, Luís Balsa; Ornelas, António. Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 141-157. doi: 10.1051/cocv/2013058

Cité par Sources :