Wasserstein gradient flows from large deviations of many-particle limits
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1166-1188

Voir la notice de l'article provenant de la source Numdam

We study the Fokker-Planck equation as the many-particle limit of a stochastic particle system on one hand and as a Wasserstein gradient flow on the other. We write the path-space rate functional, which characterises the large deviations from the expected trajectories, in such a way that the free energy appears explicitly. Next we use this formulation via the contraction principle to prove that the discrete time rate functional is asymptotically equivalent in the Gamma-convergence sense to the functional derived from the Wasserstein gradient discretization scheme.

DOI : 10.1051/cocv/2013049
Classification : 35A15, 5Q84
Keywords: Wasserstein, gradient flows, Fokker-Planck, gamma-convergence, large deviations
@article{COCV_2013__19_4_1166_0,
     author = {Duong, Manh Hong and Laschos, Vaios and Renger, Michiel},
     title = {Wasserstein gradient flows from large deviations of many-particle limits},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1166--1188},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {4},
     year = {2013},
     doi = {10.1051/cocv/2013049},
     mrnumber = {3182684},
     zbl = {1284.35011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013049/}
}
TY  - JOUR
AU  - Duong, Manh Hong
AU  - Laschos, Vaios
AU  - Renger, Michiel
TI  - Wasserstein gradient flows from large deviations of many-particle limits
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 1166
EP  - 1188
VL  - 19
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013049/
DO  - 10.1051/cocv/2013049
LA  - en
ID  - COCV_2013__19_4_1166_0
ER  - 
%0 Journal Article
%A Duong, Manh Hong
%A Laschos, Vaios
%A Renger, Michiel
%T Wasserstein gradient flows from large deviations of many-particle limits
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 1166-1188
%V 19
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013049/
%R 10.1051/cocv/2013049
%G en
%F COCV_2013__19_4_1166_0
Duong, Manh Hong; Laschos, Vaios; Renger, Michiel. Wasserstein gradient flows from large deviations of many-particle limits. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1166-1188. doi: 10.1051/cocv/2013049

Cité par Sources :