A game interpretation of the Neumann problem for fully nonlinear parabolic and elliptic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1109-1165

Voir la notice de l'article provenant de la source Numdam

We provide a deterministic-control-based interpretation for a broad class of fully nonlinear parabolic and elliptic PDEs with continuous Neumann boundary conditions in a smooth domain. We construct families of two-person games depending on a small parameter ε which extend those proposed by Kohn and Serfaty [21]. These new games treat a Neumann boundary condition by introducing some specific rules near the boundary. We show that the value function converges, in the viscosity sense, to the solution of the PDE as ε tends to zero. Moreover, our construction allows us to treat both the oblique and the mixed type Dirichlet-Neumann boundary conditions.

DOI : 10.1051/cocv/2013047
Classification : 49L25, 35J60, 35K55, 49L20, 35D40, 35M12, 49N90
Keywords: fully nonlinear elliptic equations, viscosity solutions, Neumann problem, deterministic control, optimal control, dynamic programming principle, oblique problem, mixed-type Dirichlet-Neumann boundary conditions
@article{COCV_2013__19_4_1109_0,
     author = {Daniel, Jean-Paul},
     title = {A game interpretation of the {Neumann} problem for fully nonlinear parabolic and elliptic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1109--1165},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {4},
     year = {2013},
     doi = {10.1051/cocv/2013047},
     mrnumber = {3182683},
     zbl = {1283.49028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013047/}
}
TY  - JOUR
AU  - Daniel, Jean-Paul
TI  - A game interpretation of the Neumann problem for fully nonlinear parabolic and elliptic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 1109
EP  - 1165
VL  - 19
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013047/
DO  - 10.1051/cocv/2013047
LA  - en
ID  - COCV_2013__19_4_1109_0
ER  - 
%0 Journal Article
%A Daniel, Jean-Paul
%T A game interpretation of the Neumann problem for fully nonlinear parabolic and elliptic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 1109-1165
%V 19
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2013047/
%R 10.1051/cocv/2013047
%G en
%F COCV_2013__19_4_1109_0
Daniel, Jean-Paul. A game interpretation of the Neumann problem for fully nonlinear parabolic and elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1109-1165. doi: 10.1051/cocv/2013047

Cité par Sources :