Transport problems and disintegration maps
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 888-905
Cet article a éte moissonné depuis la source Numdam
By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a lucky case.
DOI :
10.1051/cocv/2012037
Classification :
37J50, 49Q20, 49Q15
Keywords: optimal mass transportation theory, Monge − Kantorovich problem, calculus of variations, shape analysis, geometric measure theory
Keywords: optimal mass transportation theory, Monge − Kantorovich problem, calculus of variations, shape analysis, geometric measure theory
@article{COCV_2013__19_3_888_0,
author = {Granieri, Luca and Maddalena, Francesco},
title = {Transport problems and disintegration maps},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {888--905},
year = {2013},
publisher = {EDP-Sciences},
volume = {19},
number = {3},
doi = {10.1051/cocv/2012037},
mrnumber = {3092366},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/}
}
TY - JOUR AU - Granieri, Luca AU - Maddalena, Francesco TI - Transport problems and disintegration maps JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 888 EP - 905 VL - 19 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/ DO - 10.1051/cocv/2012037 LA - en ID - COCV_2013__19_3_888_0 ER -
%0 Journal Article %A Granieri, Luca %A Maddalena, Francesco %T Transport problems and disintegration maps %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 888-905 %V 19 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/ %R 10.1051/cocv/2012037 %G en %F COCV_2013__19_3_888_0
Granieri, Luca; Maddalena, Francesco. Transport problems and disintegration maps. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 888-905. doi: 10.1051/cocv/2012037
Cité par Sources :