Voir la notice de l'article provenant de la source Numdam
By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a lucky case.
@article{COCV_2013__19_3_888_0, author = {Granieri, Luca and Maddalena, Francesco}, title = {Transport problems and disintegration maps}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {888--905}, publisher = {EDP-Sciences}, volume = {19}, number = {3}, year = {2013}, doi = {10.1051/cocv/2012037}, mrnumber = {3092366}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/} }
TY - JOUR AU - Granieri, Luca AU - Maddalena, Francesco TI - Transport problems and disintegration maps JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 888 EP - 905 VL - 19 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/ DO - 10.1051/cocv/2012037 LA - en ID - COCV_2013__19_3_888_0 ER -
%0 Journal Article %A Granieri, Luca %A Maddalena, Francesco %T Transport problems and disintegration maps %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 888-905 %V 19 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/ %R 10.1051/cocv/2012037 %G en %F COCV_2013__19_3_888_0
Granieri, Luca; Maddalena, Francesco. Transport problems and disintegration maps. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 888-905. doi: 10.1051/cocv/2012037
Cité par Sources :