Transport problems and disintegration maps
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 888-905.

Voir la notice de l'article provenant de la source Numdam

By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a lucky case.

DOI : 10.1051/cocv/2012037
Classification : 37J50, 49Q20, 49Q15
Keywords: optimal mass transportation theory, Monge − Kantorovich problem, calculus of variations, shape analysis, geometric measure theory
@article{COCV_2013__19_3_888_0,
     author = {Granieri, Luca and Maddalena, Francesco},
     title = {Transport problems and disintegration maps},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {888--905},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {3},
     year = {2013},
     doi = {10.1051/cocv/2012037},
     mrnumber = {3092366},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/}
}
TY  - JOUR
AU  - Granieri, Luca
AU  - Maddalena, Francesco
TI  - Transport problems and disintegration maps
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 888
EP  - 905
VL  - 19
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/
DO  - 10.1051/cocv/2012037
LA  - en
ID  - COCV_2013__19_3_888_0
ER  - 
%0 Journal Article
%A Granieri, Luca
%A Maddalena, Francesco
%T Transport problems and disintegration maps
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 888-905
%V 19
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/
%R 10.1051/cocv/2012037
%G en
%F COCV_2013__19_3_888_0
Granieri, Luca; Maddalena, Francesco. Transport problems and disintegration maps. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 888-905. doi : 10.1051/cocv/2012037. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012037/

[1] P.T. Abdellaoui and H. Heinich, Caracterisation d'une solution optimale au probleme de Monge − Kantorovich. Bull. Soc. Math. France 127 (1999) 429-443. | Zbl | MR | mathdoc-id

[2] N. Ahmad, H.K. Kim and R.J. Mccann, Optimal transportation, topology and uniqueness. Bull. Math. Sci. 1 (2011) 13-32.

[3] L. Ambrosio, Lecture Notes on Transport Problems, in Mathematical Aspects of Evolving Interfaces. Lect. Notes Math. vol. 1812. Springer, Berlin (2003) 1-52. | Zbl | MR

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000). | Zbl | MR

[5] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Notes Math. ETH Zürich, Birkhäuser (2005). | Zbl | MR

[6] P. Bernard, Young measures, superposition and transport. Indiana Univ. Math. J. 57 (2008) 247-276. | Zbl | MR

[7] G. Carlier and A. Lachapelle, A Planning Problem Combining Calculus of Variations and Optimal Transport. Appl. Math. Optim. 63 (2011) 1-9. | Zbl | MR

[8] J.A. Cuesta-Albertos and A. Tuero-Diaz, A characterization for the Solution of the Monge − Kantorovich Mass Transference Problem. Statist. Probab. Lett. 16 (1993) 147-152. | Zbl | MR

[9] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp spaces. Springer (2007). | Zbl | MR

[10] W. Gangbo, The Monge Transfer Problem and its Applications. Contemp. Math. 226 (1999) 79-104. | Zbl | MR

[11] J. Gonzalez-Hernandez and J. Gonzalez-Hernandez, Extreme Points of Sets of Randomized Strategies in Constrained Optimization and Control Problems. SIAM J. Optim. 15 (2005) 1085-1104. | Zbl | MR

[12] J. Gonzalez-Hernandez, J. Rigoberto Gabriel and J. Gonzalez-Hernandez, On Solutions to the Mass Transfer Problem. SIAM J. Optim. 17 (2006) 485-499. | Zbl

[13] L. Granieri, Optimal Transport and Minimizing Measures. LAP Lambert Academic Publishing (2010).

[14] L. Granieri and F. Maddalena, A Metric Approach to Elastic reformations, preprint (2012), on http://cvgmt.sns.it. | MR

[15] V. Levin, Abstract Cyclical Monotonicity and Monge Solutions for the General Monge − Kantorovich Problem. Set-Valued Anal. 7 (1999) 7-32. | Zbl | MR

[16] M. Mcasey and L. Mou, Optimal Locations and the Mass Transport Problem. Contemp. Math. 226 (1998) 131-148. | Zbl | MR

[17] A. Pratelli, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa (2003).

[18] S.T. Rachev and L. Ruschendorf, Mass Transportation Problems, Probab. Appl. Springer-Verlag, New York I (1998).

[19] C. Villani, Topics in Mass Transportation. Grad. Stud. Math., vol. 58. AMS, Providence, RI (2004). | MR

[20] C. Villani, Optimal Transport, Old and New. Springer (2009). | Zbl | MR

Cité par Sources :