Adjoint methods for obstacle problems and weakly coupled systems of PDE
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 754-779.

Voir la notice de l'article provenant de la source Numdam

The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton - Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.

DOI : 10.1051/cocv/2012032
Classification : 35F20, 35F30, 37J50, 49L25
Keywords: adjoint methods, cell problems, Hamilton − Jacobi equations, obstacle problems, weakly coupled systems, weak KAM theory
@article{COCV_2013__19_3_754_0,
     author = {Cagnetti, Filippo and Gomes, Diogo and Tran, Hung Vinh},
     title = {Adjoint methods for obstacle problems and weakly coupled systems of {PDE}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {754--779},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {3},
     year = {2013},
     doi = {10.1051/cocv/2012032},
     mrnumber = {3092361},
     zbl = {1273.35090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/}
}
TY  - JOUR
AU  - Cagnetti, Filippo
AU  - Gomes, Diogo
AU  - Tran, Hung Vinh
TI  - Adjoint methods for obstacle problems and weakly coupled systems of PDE
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 754
EP  - 779
VL  - 19
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/
DO  - 10.1051/cocv/2012032
LA  - en
ID  - COCV_2013__19_3_754_0
ER  - 
%0 Journal Article
%A Cagnetti, Filippo
%A Gomes, Diogo
%A Tran, Hung Vinh
%T Adjoint methods for obstacle problems and weakly coupled systems of PDE
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 754-779
%V 19
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/
%R 10.1051/cocv/2012032
%G en
%F COCV_2013__19_3_754_0
Cagnetti, Filippo; Gomes, Diogo; Tran, Hung Vinh. Adjoint methods for obstacle problems and weakly coupled systems of PDE. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 754-779. doi : 10.1051/cocv/2012032. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/

[1] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133-1148. | Zbl | MR

[2] I. Capuzzo-Dolcetta and L.C. Evans, Optimal switching for ordinary differential equations. SIAM J. Control Optim. 22 (1984) 143-161. | Zbl | MR

[3] F. Cagnetti, D. Gomes and H.V. Tran, Aubry-Mather measures in the nonconvex setting. SIAM J. Math. Anal. 43 (2011) 2601-2629. | Zbl | MR

[4] F. Camilli and P. Loreti, Comparison results for a class of weakly coupled systems of eikonal equations. Hokkaido Math. J. 37 (2008) 349-362. | MR

[5] F. Camilli, P. Loreti, and N. Yamada, Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Commun. Pure Appl. Anal. 8 (2009) 1291-1302. | Zbl | MR

[6] H. Engler and S.M. Lenhart, Viscosity solutions for weakly coupled systems of Hamilton-Jacobi equations. Proc. London Math. Soc. 63 (1991) 212-240. | Zbl | MR

[7] L.C. Evans and C.K. Smart, Adjoint methods for the infinity Laplacian partial differential equation. Arch. Ration. Mech. Anal. 201 (2011) 87-113. | Zbl | MR

[8] L.C. Evans, Adjoint and compensated compactness methods for Hamilton-Jacobi PDE. Arch. Ration. Mech. Anal. 197 (2010) 1053-1088. | Zbl | MR

[9] D.A. Gomes, A stochastic analogue of Aubry-Mather theory. Nonlinearity 15 (2002) 581-603. | Zbl | MR

[10] H. Ishii and S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs. Commun. Partial Differ. Equ. 16 (1991) 1095-1128. | Zbl | MR

[11] K. Ishii and N. Yamada, On the rate of convergence of solutions for the singular perturbations of gradient obstacle problems. Funkcial. Ekvac. 33 (1990) 551-562. | Zbl | MR

[12] P.L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass. 69 (1982). | Zbl | MR

[13] P.L. Lions, G. Papanicolaou and S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations, Preliminary Version, (1988).

[14] H.V. Tran, Adjoint methods for static Hamilton-Jacobi equations. Calc. Var. Partial Differ. Equ. 41 (2011) 301-319. | Zbl | MR

Cité par Sources :