Voir la notice de l'article provenant de la source Numdam
The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton - Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.
@article{COCV_2013__19_3_754_0, author = {Cagnetti, Filippo and Gomes, Diogo and Tran, Hung Vinh}, title = {Adjoint methods for obstacle problems and weakly coupled systems of {PDE}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {754--779}, publisher = {EDP-Sciences}, volume = {19}, number = {3}, year = {2013}, doi = {10.1051/cocv/2012032}, mrnumber = {3092361}, zbl = {1273.35090}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/} }
TY - JOUR AU - Cagnetti, Filippo AU - Gomes, Diogo AU - Tran, Hung Vinh TI - Adjoint methods for obstacle problems and weakly coupled systems of PDE JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 754 EP - 779 VL - 19 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/ DO - 10.1051/cocv/2012032 LA - en ID - COCV_2013__19_3_754_0 ER -
%0 Journal Article %A Cagnetti, Filippo %A Gomes, Diogo %A Tran, Hung Vinh %T Adjoint methods for obstacle problems and weakly coupled systems of PDE %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 754-779 %V 19 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/ %R 10.1051/cocv/2012032 %G en %F COCV_2013__19_3_754_0
Cagnetti, Filippo; Gomes, Diogo; Tran, Hung Vinh. Adjoint methods for obstacle problems and weakly coupled systems of PDE. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 3, pp. 754-779. doi : 10.1051/cocv/2012032. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012032/
[1] Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133-1148. | Zbl | MR
and ,[2] Optimal switching for ordinary differential equations. SIAM J. Control Optim. 22 (1984) 143-161. | Zbl | MR
and ,[3] Aubry-Mather measures in the nonconvex setting. SIAM J. Math. Anal. 43 (2011) 2601-2629. | Zbl | MR
, and ,[4] Comparison results for a class of weakly coupled systems of eikonal equations. Hokkaido Math. J. 37 (2008) 349-362. | MR
and ,[5] Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Commun. Pure Appl. Anal. 8 (2009) 1291-1302. | Zbl | MR
, , and ,[6] Viscosity solutions for weakly coupled systems of Hamilton-Jacobi equations. Proc. London Math. Soc. 63 (1991) 212-240. | Zbl | MR
and ,[7] Adjoint methods for the infinity Laplacian partial differential equation. Arch. Ration. Mech. Anal. 201 (2011) 87-113. | Zbl | MR
and ,[8] Adjoint and compensated compactness methods for Hamilton-Jacobi PDE. Arch. Ration. Mech. Anal. 197 (2010) 1053-1088. | Zbl | MR
,[9] A stochastic analogue of Aubry-Mather theory. Nonlinearity 15 (2002) 581-603. | Zbl | MR
,[10] Viscosity solutions for monotone systems of second-order elliptic PDEs. Commun. Partial Differ. Equ. 16 (1991) 1095-1128. | Zbl | MR
and ,[11] On the rate of convergence of solutions for the singular perturbations of gradient obstacle problems. Funkcial. Ekvac. 33 (1990) 551-562. | Zbl | MR
and ,[12] Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass. 69 (1982). | Zbl | MR
,[13] Homogenization of Hamilton-Jacobi equations, Preliminary Version, (1988).
, and ,[14] Adjoint methods for static Hamilton-Jacobi equations. Calc. Var. Partial Differ. Equ. 41 (2011) 301-319. | Zbl | MR
,Cité par Sources :