Subriemannian geodesics of Carnot groups of step 3
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 274-287

Voir la notice de l'article provenant de la source Numdam

In Carnot groups of step  ≤ 3, all subriemannian geodesics are proved to be normal. The proof is based on a reduction argument and the Goh condition for minimality of singular curves. The Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils down to the graded structures of Carnot groups.

DOI : 10.1051/cocv/2012006
Classification : 53C17, 49K30
Keywords: subriemannian geometry, geodesics, calculus of variations, Goh condition, generalized Legendre-Jacobi condition
@article{COCV_2013__19_1_274_0,
     author = {Tan, Kanghai and Yang, Xiaoping},
     title = {Subriemannian geodesics of {Carnot} groups of step 3},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {274--287},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {1},
     year = {2013},
     doi = {10.1051/cocv/2012006},
     mrnumber = {3023070},
     zbl = {1276.53041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012006/}
}
TY  - JOUR
AU  - Tan, Kanghai
AU  - Yang, Xiaoping
TI  - Subriemannian geodesics of Carnot groups of step 3
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 274
EP  - 287
VL  - 19
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012006/
DO  - 10.1051/cocv/2012006
LA  - en
ID  - COCV_2013__19_1_274_0
ER  - 
%0 Journal Article
%A Tan, Kanghai
%A Yang, Xiaoping
%T Subriemannian geodesics of Carnot groups of step 3
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 274-287
%V 19
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2012006/
%R 10.1051/cocv/2012006
%G en
%F COCV_2013__19_1_274_0
Tan, Kanghai; Yang, Xiaoping. Subriemannian geodesics of Carnot groups of step 3. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 274-287. doi: 10.1051/cocv/2012006

Cité par Sources :