Continuity of solutions of a nonlinear elliptic equation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 1-19

Voir la notice de l'article provenant de la source Numdam

We consider a nonlinear elliptic equation of the form div [a(∇u)] + F[u] = 0 on a domain Ω, subject to a Dirichlet boundary condition tru = φ. We do not assume that the higher order term a satisfies growth conditions from above. We prove the existence of continuous solutions either when Ω is convex and φ satisfies a one-sided bounded slope condition, or when a is radial: a ( ξ ) = l ( | ξ | ) | ξ | ξ for some increasing l:ℝ+ → ℝ+.

DOI : 10.1051/cocv/2011194
Classification : 35J20, 35J25, 35J60
Keywords: nonlinear elliptic equations, continuity of solutions, lower bounded slope condition, Lavrentiev phenomenon
@article{COCV_2013__19_1_1_0,
     author = {Bousquet, Pierre},
     title = {Continuity of solutions of a nonlinear elliptic equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--19},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {1},
     year = {2013},
     doi = {10.1051/cocv/2011194},
     mrnumber = {3023057},
     zbl = {1271.35028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011194/}
}
TY  - JOUR
AU  - Bousquet, Pierre
TI  - Continuity of solutions of a nonlinear elliptic equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 1
EP  - 19
VL  - 19
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011194/
DO  - 10.1051/cocv/2011194
LA  - en
ID  - COCV_2013__19_1_1_0
ER  - 
%0 Journal Article
%A Bousquet, Pierre
%T Continuity of solutions of a nonlinear elliptic equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 1-19
%V 19
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011194/
%R 10.1051/cocv/2011194
%G en
%F COCV_2013__19_1_1_0
Bousquet, Pierre. Continuity of solutions of a nonlinear elliptic equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 1-19. doi: 10.1051/cocv/2011194

Cité par Sources :