On convex sets that minimize the average distance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 1049-1072

Voir la notice de l'article provenant de la source Numdam

In this paper we study the compact and convex sets K Ω 2 that minimize

Ω dist ( 𝐱 , K ) d 𝐱 + λ 1 Vol ( K ) + λ 2 Per ( K )
for some constants λ 1 and λ 2 , that could possibly be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differently since polygons are never minimizers. Finally using a purely geometrical argument from Tilli [J. Convex Anal. 17 (2010) 583-595] we can prove that any arbitrary convex set can be a minimizer when both perimeter and volume constraints are considered.

DOI : 10.1051/cocv/2011190
Classification : 49Q10, 49K30
Keywords: shape optimization, distance functional, optimality conditions, convex analysis, second order variation, gamma-convergence
@article{COCV_2012__18_4_1049_0,
     author = {Lemenant, Antoine and Mainini, Edoardo},
     title = {On convex sets that minimize the average distance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1049--1072},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {4},
     year = {2012},
     doi = {10.1051/cocv/2011190},
     mrnumber = {3019472},
     zbl = {1259.49065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011190/}
}
TY  - JOUR
AU  - Lemenant, Antoine
AU  - Mainini, Edoardo
TI  - On convex sets that minimize the average distance
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 1049
EP  - 1072
VL  - 18
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011190/
DO  - 10.1051/cocv/2011190
LA  - en
ID  - COCV_2012__18_4_1049_0
ER  - 
%0 Journal Article
%A Lemenant, Antoine
%A Mainini, Edoardo
%T On convex sets that minimize the average distance
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 1049-1072
%V 18
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011190/
%R 10.1051/cocv/2011190
%G en
%F COCV_2012__18_4_1049_0
Lemenant, Antoine; Mainini, Edoardo. On convex sets that minimize the average distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 1049-1072. doi: 10.1051/cocv/2011190

Cité par Sources :