Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 915-929.

Voir la notice de l'article provenant de la source Numdam

In this paper, using direct and inverse images for fractional stochastic tangent sets, we establish the deterministic necessary and sufficient conditions which control that the solution of a given stochastic differential equation driven by the fractional Brownian motion evolves in some particular sets K. As a consequence, a comparison theorem is obtained.

DOI : 10.1051/cocv/2011188
Classification : 60H10, 60H20, 60G22
Keywords: stochastic viability, stochastic differential equation, stochastic tangent set, fractional brownian motion
@article{COCV_2012__18_4_915_0,
     author = {Nie, Tianyang and R\u{a}\c{s}canu, Aurel},
     title = {Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {915--929},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {4},
     year = {2012},
     doi = {10.1051/cocv/2011188},
     mrnumber = {3019464},
     zbl = {1263.60052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/}
}
TY  - JOUR
AU  - Nie, Tianyang
AU  - Răşcanu, Aurel
TI  - Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 915
EP  - 929
VL  - 18
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/
DO  - 10.1051/cocv/2011188
LA  - en
ID  - COCV_2012__18_4_915_0
ER  - 
%0 Journal Article
%A Nie, Tianyang
%A Răşcanu, Aurel
%T Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 915-929
%V 18
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/
%R 10.1051/cocv/2011188
%G en
%F COCV_2012__18_4_915_0
Nie, Tianyang; Răşcanu, Aurel. Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 915-929. doi : 10.1051/cocv/2011188. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/

[1] J.P. Aubin and G. Da Prato, Stochastic viability and invariance. Ann. Scuola Norm. Super. Pisa Cl. Sci. 27 (1990) 595-694. | Zbl | MR | mathdoc-id

[2] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic calculus for fractional Brownian motion and applications. Springer (2006). | Zbl

[3] R. Buckdahn, M. Quincampoix and A. Rascanu, Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux derivées partielles. C. R. Acad. Sci. Paris Sér. I 325 (1997) 1159-1162. | Zbl | MR

[4] R. Buckdahn, S. Peng, M. Quincampoix and C. Rainer, Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I 327 (1998) 17-22. | Zbl | MR

[5] R. Buckdahn, M. Quincampoix and A. Rascanu, Viability property for backward stochastic differential equation and applications to partial differential equation. Probab. Theory Relat. Fields 116 (2000) 485-504. | Zbl | MR

[6] R. Buckdahn, M. Quincampoix, C. Rainer and A. Rascanu, Viability of moving sets for stochastic differential equation. Adv. Differential Equations 7 (2002) 1045-1072. | Zbl | MR

[7] I. Ciotir and A. Rascanu, Viability for stochastic differential equation driven by fractional Brownian motions. J. Differential Equations 247 (2009) 1505-1528. | Zbl | MR

[8] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | Zbl | MR

[9] A. Milian, A note on stochastic invariance for Ito equations. Bull. Pol. Acad. Sci., Math. 41 (1993) 139-150. | Zbl | MR

[10] Y.S. Mishura, Stochastic calculus for fractional Brownian motion and related processes. Springer (2007). | Zbl | MR

[11] D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | Zbl | MR

[12] K. Yosida, Functional Analysis. Springer (1971).

Cité par Sources :