Voir la notice de l'article provenant de la source Numdam
In this paper, using direct and inverse images for fractional stochastic tangent sets, we establish the deterministic necessary and sufficient conditions which control that the solution of a given stochastic differential equation driven by the fractional Brownian motion evolves in some particular sets K. As a consequence, a comparison theorem is obtained.
@article{COCV_2012__18_4_915_0, author = {Nie, Tianyang and R\u{a}\c{s}canu, Aurel}, title = {Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {915--929}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011188}, mrnumber = {3019464}, zbl = {1263.60052}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/} }
TY - JOUR AU - Nie, Tianyang AU - Răşcanu, Aurel TI - Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 915 EP - 929 VL - 18 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/ DO - 10.1051/cocv/2011188 LA - en ID - COCV_2012__18_4_915_0 ER -
%0 Journal Article %A Nie, Tianyang %A Răşcanu, Aurel %T Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 915-929 %V 18 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/ %R 10.1051/cocv/2011188 %G en %F COCV_2012__18_4_915_0
Nie, Tianyang; Răşcanu, Aurel. Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 915-929. doi : 10.1051/cocv/2011188. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/
[1] Stochastic viability and invariance. Ann. Scuola Norm. Super. Pisa Cl. Sci. 27 (1990) 595-694. | Zbl | MR | mathdoc-id
and ,[2] Stochastic calculus for fractional Brownian motion and applications. Springer (2006). | Zbl
, , and ,[3] Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux derivées partielles. C. R. Acad. Sci. Paris Sér. I 325 (1997) 1159-1162. | Zbl | MR
, and ,[4] Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I 327 (1998) 17-22. | Zbl | MR
, , and ,[5] Viability property for backward stochastic differential equation and applications to partial differential equation. Probab. Theory Relat. Fields 116 (2000) 485-504. | Zbl | MR
, and ,[6] Viability of moving sets for stochastic differential equation. Adv. Differential Equations 7 (2002) 1045-1072. | Zbl | MR
, , and ,[7] Viability for stochastic differential equation driven by fractional Brownian motions. J. Differential Equations 247 (2009) 1505-1528. | Zbl | MR
and ,[8] Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | Zbl | MR
and ,[9] A note on stochastic invariance for Ito equations. Bull. Pol. Acad. Sci., Math. 41 (1993) 139-150. | Zbl | MR
,[10] Stochastic calculus for fractional Brownian motion and related processes. Springer (2007). | Zbl | MR
,[11] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | Zbl | MR
and ,[12] Functional Analysis. Springer (1971).
,Cité par Sources :