Voir la notice de l'article provenant de la source Numdam
In this paper, using direct and inverse images for fractional stochastic tangent sets, we establish the deterministic necessary and sufficient conditions which control that the solution of a given stochastic differential equation driven by the fractional Brownian motion evolves in some particular sets K. As a consequence, a comparison theorem is obtained.
@article{COCV_2012__18_4_915_0, author = {Nie, Tianyang and R\u{a}\c{s}canu, Aurel}, title = {Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {915--929}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011188}, mrnumber = {3019464}, zbl = {1263.60052}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/} }
TY - JOUR AU - Nie, Tianyang AU - Răşcanu, Aurel TI - Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 915 EP - 929 VL - 18 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/ DO - 10.1051/cocv/2011188 LA - en ID - COCV_2012__18_4_915_0 ER -
%0 Journal Article %A Nie, Tianyang %A Răşcanu, Aurel %T Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 915-929 %V 18 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011188/ %R 10.1051/cocv/2011188 %G en %F COCV_2012__18_4_915_0
Nie, Tianyang; Răşcanu, Aurel. Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 915-929. doi: 10.1051/cocv/2011188
Cité par Sources :