Linearization techniques for 𝕃 See PDF-control problems and dynamic programming principles in classical and 𝕃 See PDF-control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 836-855

Voir la notice de l'article provenant de la source Numdam

The aim of the paper is to provide a linearization approach to the 𝕃 See PDF-control problems. We begin by proving a semigroup-type behaviour of the set of constraints appearing in the linearized formulation of (standard) control problems. As a byproduct we obtain a linear formulation of the dynamic programming principle. Then, we use the 𝕃 p See PDF approach and the associated linear formulations. This seems to be the most appropriate tool for treating 𝕃 See PDF problems in continuous and lower semicontinuous setting.

DOI : 10.1051/cocv/2011183
Classification : 34A60, 49J45, 49L20, 49L25, 93C15
Keywords: dynamic programming principle, essential supremum, hj equations, occupational measures, $\mathbb {L}^{p}$See pdf approximations
@article{COCV_2012__18_3_836_0,
     author = {Goreac, Dan and Serea, Oana-Silvia},
     title = {Linearization techniques for $\mathbb {L}^{\infty }${See} {PDF-control} problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }${See} {PDF-control} problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {836--855},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011183},
     mrnumber = {3041666},
     zbl = {1262.49030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011183/}
}
TY  - JOUR
AU  - Goreac, Dan
AU  - Serea, Oana-Silvia
TI  - Linearization techniques for $\mathbb {L}^{\infty }$See PDF-control problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }$See PDF-control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 836
EP  - 855
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011183/
DO  - 10.1051/cocv/2011183
LA  - en
ID  - COCV_2012__18_3_836_0
ER  - 
%0 Journal Article
%A Goreac, Dan
%A Serea, Oana-Silvia
%T Linearization techniques for $\mathbb {L}^{\infty }$See PDF-control problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }$See PDF-control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 836-855
%V 18
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011183/
%R 10.1051/cocv/2011183
%G en
%F COCV_2012__18_3_836_0
Goreac, Dan; Serea, Oana-Silvia. Linearization techniques for $\mathbb {L}^{\infty }$See PDF-control problems and dynamic programming principles in classical and $\mathbb {L}^{\infty }$See PDF-control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 836-855. doi: 10.1051/cocv/2011183

Cité par Sources :