Voir la notice de l'article provenant de la source Numdam
We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on [0,∞[ and satisfies the divergence condition
@article{COCV_2012__18_3_621_0, author = {Giannetti, Flavia and Passarelli di Napoli, Antonia}, title = {On the continuity of degenerate $n$-harmonic functions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {621--642}, publisher = {EDP-Sciences}, volume = {18}, number = {3}, year = {2012}, doi = {10.1051/cocv/2011164}, zbl = {1258.35044}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011164/} }
TY - JOUR AU - Giannetti, Flavia AU - Passarelli di Napoli, Antonia TI - On the continuity of degenerate $n$-harmonic functions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 621 EP - 642 VL - 18 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011164/ DO - 10.1051/cocv/2011164 LA - en ID - COCV_2012__18_3_621_0 ER -
%0 Journal Article %A Giannetti, Flavia %A Passarelli di Napoli, Antonia %T On the continuity of degenerate $n$-harmonic functions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 621-642 %V 18 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011164/ %R 10.1051/cocv/2011164 %G en %F COCV_2012__18_3_621_0
Giannetti, Flavia; Passarelli di Napoli, Antonia. On the continuity of degenerate $n$-harmonic functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 621-642. doi: 10.1051/cocv/2011164
Cité par Sources :