On the continuity of degenerate n-harmonic functions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 621-642

Voir la notice de l'article provenant de la source Numdam

We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on  [0,∞[  and satisfies the divergence condition

1 P(t) t 2 dt=.
∫ 1 ∞ P ( t ) t 2   d t = ∞ .

DOI : 10.1051/cocv/2011164
Classification : 35B65, 31B05
Keywords: Orlicz classes, degenerate elliptic equations, continuity
@article{COCV_2012__18_3_621_0,
     author = {Giannetti, Flavia and Passarelli di Napoli, Antonia},
     title = {On the continuity of degenerate $n$-harmonic functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {621--642},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011164},
     zbl = {1258.35044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011164/}
}
TY  - JOUR
AU  - Giannetti, Flavia
AU  - Passarelli di Napoli, Antonia
TI  - On the continuity of degenerate $n$-harmonic functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 621
EP  - 642
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011164/
DO  - 10.1051/cocv/2011164
LA  - en
ID  - COCV_2012__18_3_621_0
ER  - 
%0 Journal Article
%A Giannetti, Flavia
%A Passarelli di Napoli, Antonia
%T On the continuity of degenerate $n$-harmonic functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 621-642
%V 18
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011164/
%R 10.1051/cocv/2011164
%G en
%F COCV_2012__18_3_621_0
Giannetti, Flavia; Passarelli di Napoli, Antonia. On the continuity of degenerate $n$-harmonic functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 621-642. doi: 10.1051/cocv/2011164

Cité par Sources :