Approximation by finitely supported measures
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 343-359

Voir la notice de l'article provenant de la source Numdam

We consider the problem of approximating a probability measure defined on a metric space by a measure supported on a finite number of points. More specifically we seek the asymptotic behavior of the minimal Wasserstein distance to an approximation when the number of points goes to infinity. The main result gives an equivalent when the space is a Riemannian manifold and the approximated measure is absolutely continuous and compactly supported.

DOI : 10.1051/cocv/2010100
Classification : 49Q20, 90B85
Keywords: measures, Wasserstein distance, quantization, location problem, centroidal Voronoi tessellations
@article{COCV_2012__18_2_343_0,
     author = {Kloeckner, Beno{\^\i}t},
     title = {Approximation by finitely supported measures},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {343--359},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {2},
     year = {2012},
     doi = {10.1051/cocv/2010100},
     mrnumber = {2954629},
     zbl = {1246.49040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010100/}
}
TY  - JOUR
AU  - Kloeckner, Benoît
TI  - Approximation by finitely supported measures
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 343
EP  - 359
VL  - 18
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010100/
DO  - 10.1051/cocv/2010100
LA  - en
ID  - COCV_2012__18_2_343_0
ER  - 
%0 Journal Article
%A Kloeckner, Benoît
%T Approximation by finitely supported measures
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 343-359
%V 18
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010100/
%R 10.1051/cocv/2010100
%G en
%F COCV_2012__18_2_343_0
Kloeckner, Benoît. Approximation by finitely supported measures. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 343-359. doi: 10.1051/cocv/2010100

Cité par Sources :