On a Bernoulli problem with geometric constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 157-180

Voir la notice de l'article provenant de la source Numdam

A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane  {x1 = 0}  where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed and this paper is devoted first to the study of geometric and asymptotic properties of the solution and then to the numerical treatment of the problem using a shape optimization formulation. The major difficulty and originality of this paper lies in the treatment of the geometric constraints.

DOI : 10.1051/cocv/2010049
Classification : 49J10, 35J25, 35N05, 65P05
Keywords: free boundary problem, Bernoulli condition, shape optimization
@article{COCV_2012__18_1_157_0,
     author = {Laurain, Antoine and Privat, Yannick},
     title = {On a {Bernoulli} problem with geometric constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {157--180},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010049},
     mrnumber = {2887931},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010049/}
}
TY  - JOUR
AU  - Laurain, Antoine
AU  - Privat, Yannick
TI  - On a Bernoulli problem with geometric constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 157
EP  - 180
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010049/
DO  - 10.1051/cocv/2010049
LA  - en
ID  - COCV_2012__18_1_157_0
ER  - 
%0 Journal Article
%A Laurain, Antoine
%A Privat, Yannick
%T On a Bernoulli problem with geometric constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 157-180
%V 18
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010049/
%R 10.1051/cocv/2010049
%G en
%F COCV_2012__18_1_157_0
Laurain, Antoine; Privat, Yannick. On a Bernoulli problem with geometric constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 157-180. doi: 10.1051/cocv/2010049

Cité par Sources :