Voir la notice de l'article provenant de la source Numdam
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
@article{COCV_2012__18_1_1_0, author = {Carbou, Gilles and Labb\'e, St\'ephane}, title = {Stabilization of walls for nano-wires of finite length}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--21}, publisher = {EDP-Sciences}, volume = {18}, number = {1}, year = {2012}, doi = {10.1051/cocv/2010048}, mrnumber = {2887925}, zbl = {1235.35029}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010048/} }
TY - JOUR AU - Carbou, Gilles AU - Labbé, Stéphane TI - Stabilization of walls for nano-wires of finite length JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1 EP - 21 VL - 18 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010048/ DO - 10.1051/cocv/2010048 LA - en ID - COCV_2012__18_1_1_0 ER -
%0 Journal Article %A Carbou, Gilles %A Labbé, Stéphane %T Stabilization of walls for nano-wires of finite length %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1-21 %V 18 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010048/ %R 10.1051/cocv/2010048 %G en %F COCV_2012__18_1_1_0
Carbou, Gilles; Labbé, Stéphane. Stabilization of walls for nano-wires of finite length. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21. doi: 10.1051/cocv/2010048
Cité par Sources :