Stabilization of walls for nano-wires of finite length
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21
Cet article a éte moissonné depuis la source Numdam
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
DOI :
10.1051/cocv/2010048
Classification :
35B35, 35K55
Keywords: Landau-Lifschitz equation, control, stabilization
Keywords: Landau-Lifschitz equation, control, stabilization
@article{COCV_2012__18_1_1_0,
author = {Carbou, Gilles and Labb\'e, St\'ephane},
title = {Stabilization of walls for nano-wires of finite length},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1--21},
year = {2012},
publisher = {EDP-Sciences},
volume = {18},
number = {1},
doi = {10.1051/cocv/2010048},
mrnumber = {2887925},
zbl = {1235.35029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010048/}
}
TY - JOUR AU - Carbou, Gilles AU - Labbé, Stéphane TI - Stabilization of walls for nano-wires of finite length JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1 EP - 21 VL - 18 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010048/ DO - 10.1051/cocv/2010048 LA - en ID - COCV_2012__18_1_1_0 ER -
%0 Journal Article %A Carbou, Gilles %A Labbé, Stéphane %T Stabilization of walls for nano-wires of finite length %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1-21 %V 18 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010048/ %R 10.1051/cocv/2010048 %G en %F COCV_2012__18_1_1_0
Carbou, Gilles; Labbé, Stéphane. Stabilization of walls for nano-wires of finite length. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 1-21. doi: 10.1051/cocv/2010048
Cité par Sources :
