Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 761-770
Voir la notice de l'article provenant de la source Numdam
This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µ in three dimensions, where λ and μ are Lipschitz continuous and V ∈ L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
DOI :
10.1051/cocv/2010021
Classification :
35B60, 74B05
Keywords: Lamé system, Carleman estimate, strong unique continuation
Keywords: Lamé system, Carleman estimate, strong unique continuation
@article{COCV_2011__17_3_761_0,
author = {Yu, Hang},
title = {Strong unique continuation for the {Lam\'e} system with {Lipschitz} coefficients in three dimensions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {761--770},
publisher = {EDP-Sciences},
volume = {17},
number = {3},
year = {2011},
doi = {10.1051/cocv/2010021},
mrnumber = {2826979},
zbl = {1227.35109},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010021/}
}
TY - JOUR AU - Yu, Hang TI - Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 761 EP - 770 VL - 17 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010021/ DO - 10.1051/cocv/2010021 LA - en ID - COCV_2011__17_3_761_0 ER -
%0 Journal Article %A Yu, Hang %T Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 761-770 %V 17 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010021/ %R 10.1051/cocv/2010021 %G en %F COCV_2011__17_3_761_0
Yu, Hang. Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 761-770. doi: 10.1051/cocv/2010021
Cité par Sources :