Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 761-770

Voir la notice de l'article provenant de la source Numdam

This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µ in three dimensions, div (μ(u+u t ))+(λ div u)+Vu=0 where λ and μ are Lipschitz continuous and V L. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.

DOI : 10.1051/cocv/2010021
Classification : 35B60, 74B05
Keywords: Lamé system, Carleman estimate, strong unique continuation
@article{COCV_2011__17_3_761_0,
     author = {Yu, Hang},
     title = {Strong unique continuation for the {Lam\'e} system with {Lipschitz} coefficients in three dimensions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {761--770},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {3},
     year = {2011},
     doi = {10.1051/cocv/2010021},
     mrnumber = {2826979},
     zbl = {1227.35109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010021/}
}
TY  - JOUR
AU  - Yu, Hang
TI  - Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 761
EP  - 770
VL  - 17
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010021/
DO  - 10.1051/cocv/2010021
LA  - en
ID  - COCV_2011__17_3_761_0
ER  - 
%0 Journal Article
%A Yu, Hang
%T Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 761-770
%V 17
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010021/
%R 10.1051/cocv/2010021
%G en
%F COCV_2011__17_3_761_0
Yu, Hang. Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 761-770. doi: 10.1051/cocv/2010021

Cité par Sources :