Voir la notice de l'article provenant de la source Numdam
The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487-512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal. 144 (1998) 1-46] for a first-order perturbation model. This work shows that using a second-order perturbation Cahn-Hilliard-type model, the boundary layer is intrinsically connected with the transition layer in the interior of the domain. Precisely, considering the energies
@article{COCV_2011__17_3_603_0, author = {Galv\~ao-Sousa, Bernardo}, title = {Higher-order phase transitions with line-tension effect}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {603--647}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010018}, mrnumber = {2826972}, zbl = {1228.49048}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010018/} }
TY - JOUR AU - Galvão-Sousa, Bernardo TI - Higher-order phase transitions with line-tension effect JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 603 EP - 647 VL - 17 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010018/ DO - 10.1051/cocv/2010018 LA - en ID - COCV_2011__17_3_603_0 ER -
%0 Journal Article %A Galvão-Sousa, Bernardo %T Higher-order phase transitions with line-tension effect %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 603-647 %V 17 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010018/ %R 10.1051/cocv/2010018 %G en %F COCV_2011__17_3_603_0
Galvão-Sousa, Bernardo. Higher-order phase transitions with line-tension effect. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 603-647. doi: 10.1051/cocv/2010018
Cité par Sources :