Voir la notice de l'article provenant de la source Numdam
The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.
@article{COCV_2011__17_3_682_0, author = {L\'eonard, Christian}, title = {A saddle-point approach to the {Monge-Kantorovich} optimal transport problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {682--704}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010013}, mrnumber = {2826975}, zbl = {1234.46058}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010013/} }
TY - JOUR AU - Léonard, Christian TI - A saddle-point approach to the Monge-Kantorovich optimal transport problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 682 EP - 704 VL - 17 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010013/ DO - 10.1051/cocv/2010013 LA - en ID - COCV_2011__17_3_682_0 ER -
%0 Journal Article %A Léonard, Christian %T A saddle-point approach to the Monge-Kantorovich optimal transport problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 682-704 %V 17 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010013/ %R 10.1051/cocv/2010013 %G en %F COCV_2011__17_3_682_0
Léonard, Christian. A saddle-point approach to the Monge-Kantorovich optimal transport problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 682-704. doi: 10.1051/cocv/2010013
Cité par Sources :