Local semiconvexity of Kantorovich potentials on non-compact manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 648-653

Voir la notice de l'article provenant de la source Numdam

We prove that any Kantorovich potential for the cost function c = d2/2 on a Riemannian manifold (M, g) is locally semiconvex in the “region of interest”, without any compactness assumption on M, nor any assumption on its curvature. Such a region of interest is of full μ-measure as soon as the starting measure μ does not charge n - 1-dimensional rectifiable sets.

DOI : 10.1051/cocv/2010011
Classification : 49Q20, 35J96
Keywords: Kantorovich potential, optimal transport, regularity
@article{COCV_2011__17_3_648_0,
     author = {Figalli, Alessio and Gigli, Nicola},
     title = {Local semiconvexity of {Kantorovich} potentials on non-compact manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {648--653},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {3},
     year = {2011},
     doi = {10.1051/cocv/2010011},
     mrnumber = {2826973},
     zbl = {1228.49047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010011/}
}
TY  - JOUR
AU  - Figalli, Alessio
AU  - Gigli, Nicola
TI  - Local semiconvexity of Kantorovich potentials on non-compact manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 648
EP  - 653
VL  - 17
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010011/
DO  - 10.1051/cocv/2010011
LA  - en
ID  - COCV_2011__17_3_648_0
ER  - 
%0 Journal Article
%A Figalli, Alessio
%A Gigli, Nicola
%T Local semiconvexity of Kantorovich potentials on non-compact manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 648-653
%V 17
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010011/
%R 10.1051/cocv/2010011
%G en
%F COCV_2011__17_3_648_0
Figalli, Alessio; Gigli, Nicola. Local semiconvexity of Kantorovich potentials on non-compact manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 648-653. doi: 10.1051/cocv/2010011

Cité par Sources :