A finite dimensional linear programming approximation of Mather's variational problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 1094-1109

Voir la notice de l'article provenant de la source Numdam

We provide an approximation of Mather variational problem by finite dimensional minimization problems in the framework of Γ-convergence. By a linear programming interpretation as done in [Evans and Gomes, ESAIM: COCV 8 (2002) 693-702] we state a duality theorem for the Mather problem, as well a finite dimensional approximation for the dual problem.

DOI : 10.1051/cocv/2009039
Classification : 37J50, 49Q20, 49N60, 74P20, 65K10
Keywords: Mather problem, minimal measures, linear programming, Γ-convergence
@article{COCV_2010__16_4_1094_0,
     author = {Granieri, Luca},
     title = {A finite dimensional linear programming approximation {of~Mather's} variational problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1094--1109},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {4},
     year = {2010},
     doi = {10.1051/cocv/2009039},
     mrnumber = {2744164},
     zbl = {1205.37077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009039/}
}
TY  - JOUR
AU  - Granieri, Luca
TI  - A finite dimensional linear programming approximation of Mather's variational problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 1094
EP  - 1109
VL  - 16
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009039/
DO  - 10.1051/cocv/2009039
LA  - en
ID  - COCV_2010__16_4_1094_0
ER  - 
%0 Journal Article
%A Granieri, Luca
%T A finite dimensional linear programming approximation of Mather's variational problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 1094-1109
%V 16
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009039/
%R 10.1051/cocv/2009039
%G en
%F COCV_2010__16_4_1094_0
Granieri, Luca. A finite dimensional linear programming approximation of Mather's variational problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 1094-1109. doi: 10.1051/cocv/2009039

Cité par Sources :