Voir la notice de l'article provenant de la source Numdam
We study a class of hyperbolic partial differential equations on a one dimensional spatial domain with control and observation at the boundary. Using the idea of feedback we show these systems are well-posed in the sense of Weiss and Salamon if and only if the state operator generates a C0-semigroup. Furthermore, we show that the corresponding transfer function is regular, i.e., has a limit for s going to infinity.
@article{COCV_2010__16_4_1077_0, author = {Zwart, Hans and Le Gorrec, Yann and Maschke, Bernhard and Villegas, Javier}, title = {Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1077--1093}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, doi = {10.1051/cocv/2009036}, mrnumber = {2744163}, zbl = {1202.93064}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009036/} }
TY - JOUR AU - Zwart, Hans AU - Le Gorrec, Yann AU - Maschke, Bernhard AU - Villegas, Javier TI - Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 1077 EP - 1093 VL - 16 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009036/ DO - 10.1051/cocv/2009036 LA - en ID - COCV_2010__16_4_1077_0 ER -
%0 Journal Article %A Zwart, Hans %A Le Gorrec, Yann %A Maschke, Bernhard %A Villegas, Javier %T Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 1077-1093 %V 16 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009036/ %R 10.1051/cocv/2009036 %G en %F COCV_2010__16_4_1077_0
Zwart, Hans; Le Gorrec, Yann; Maschke, Bernhard; Villegas, Javier. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 1077-1093. doi: 10.1051/cocv/2009036
Cité par Sources :