Upper bounds for a class of energies containing a non-local term
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 856-886

Voir la notice de l'article provenant de la source Numdam

In this paper we construct upper bounds for families of functionals of the form

E ε (φ):= Ω ε|φ| 2 + 1 ε W (φ)dx+1 ε N |H ¯ F(φ) | 2 dx
where Δ H ¯ u = div {χ Ω u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.

DOI : 10.1051/cocv/2009022
Classification : 35A15, 35J35, 82D40
Keywords: gamma-convergence, micromagnetics, non-local energy
@article{COCV_2010__16_4_856_0,
     author = {Poliakovsky, Arkady},
     title = {Upper bounds for a class of energies containing a non-local term},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {856--886},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {4},
     year = {2010},
     doi = {10.1051/cocv/2009022},
     mrnumber = {2744154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009022/}
}
TY  - JOUR
AU  - Poliakovsky, Arkady
TI  - Upper bounds for a class of energies containing a non-local term
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 856
EP  - 886
VL  - 16
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009022/
DO  - 10.1051/cocv/2009022
LA  - en
ID  - COCV_2010__16_4_856_0
ER  - 
%0 Journal Article
%A Poliakovsky, Arkady
%T Upper bounds for a class of energies containing a non-local term
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 856-886
%V 16
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009022/
%R 10.1051/cocv/2009022
%G en
%F COCV_2010__16_4_856_0
Poliakovsky, Arkady. Upper bounds for a class of energies containing a non-local term. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 856-886. doi: 10.1051/cocv/2009022

Cité par Sources :