Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 648-676.

Voir la notice de l'article provenant de la source Numdam

We prove some new upper and lower bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals. In particular, we improve Pólya and Szegö's [Annals of Mathematical Studies 27 (1951)] lower bound for quadrilaterals and extend Hersch's [Z. Angew. Math. Phys. 17 (1966) 457-460] upper bound for parallelograms to general quadrilaterals.

DOI : 10.1051/cocv/2009018
Classification : 35P15, 35J05
Keywords: Dirichlet eigenvalues, polygons, variational bounds
@article{COCV_2010__16_3_648_0,
     author = {Freitas, Pedro and Siudeja, Bat{\l}omiej},
     title = {Bounds for the first {Dirichlet} eigenvalue of triangles and quadrilaterals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {648--676},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {3},
     year = {2010},
     doi = {10.1051/cocv/2009018},
     mrnumber = {2674631},
     zbl = {1205.35174},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/}
}
TY  - JOUR
AU  - Freitas, Pedro
AU  - Siudeja, Batłomiej
TI  - Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 648
EP  - 676
VL  - 16
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/
DO  - 10.1051/cocv/2009018
LA  - en
ID  - COCV_2010__16_3_648_0
ER  - 
%0 Journal Article
%A Freitas, Pedro
%A Siudeja, Batłomiej
%T Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 648-676
%V 16
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/
%R 10.1051/cocv/2009018
%G en
%F COCV_2010__16_3_648_0
Freitas, Pedro; Siudeja, Batłomiej. Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 648-676. doi : 10.1051/cocv/2009018. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/

[1] P. Antunes and P. Freitas, New bounds for the principal Dirichlet eigenvalue of planar regions. Experiment. Math. 15 (2006) 333-342. | Zbl

[2] P. Antunes and P. Freitas, A numerical study of the spectral gap. J. Phys. A 41 (2008) 055201. | Zbl

[3] D. Borisov and P. Freitas, Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 547-560. | Zbl | mathdoc-id

[4] P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle. Proc. Amer. Math. Soc. 134 (2006) 2083-2089. | Zbl

[5] P. Freitas, Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi. J. Funct. Anal. 251 (2007) 376-398. | Zbl

[6] J. Hersch, Constraintes rectilignes parallèles et valeurs propres de membranes vibrantes. Z. Angew. Math. Phys. 17 (1966) 457-460. | Zbl

[7] W. Hooker and M.H. Protter, Bounds for the first eigenvalue of a rhombic membrane. J. Math. Phys. 39 (1960/1961) 18-34. | Zbl

[8] E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, in Studies in mathematical analysis and related topics, Essays in honor of George Pólya, Stanford Univ. Press, Stanford (1962) 227-231.

[9] P.J. Méndez-Hernández, Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius. Duke Math. J. 113 (2002) 93-131. | Zbl

[10] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Annals of Mathematical Studies 27. Princeton University Press, Princeton (1951). | Zbl

[11] M.H. Protter, A lower bound for the fundamental frequency of a convex region. Proc. Amer. Math. Soc. 81 (1981) 65-70. | Zbl

[12] C.K. Qu and R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel fuction Jv(x). Trans. Amer. Math. Soc. 351 (1999) 2833-2859. | Zbl

[13] B. Siudeja, Sharp bounds for eigenvalues of triangles. Michigan Math. J. 55 (2007) 243-254. | Zbl

[14] B. Siudeja, Isoperimetric inequalities for eigenvalues of triangles. Ind. Univ. Math. J. (to appear).

Cité par Sources :