Voir la notice de l'article provenant de la source Numdam
We prove some new upper and lower bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals. In particular, we improve Pólya and Szegö's [Annals of Mathematical Studies 27 (1951)] lower bound for quadrilaterals and extend Hersch's [Z. Angew. Math. Phys. 17 (1966) 457-460] upper bound for parallelograms to general quadrilaterals.
@article{COCV_2010__16_3_648_0, author = {Freitas, Pedro and Siudeja, Bat{\l}omiej}, title = {Bounds for the first {Dirichlet} eigenvalue of triangles and quadrilaterals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {648--676}, publisher = {EDP-Sciences}, volume = {16}, number = {3}, year = {2010}, doi = {10.1051/cocv/2009018}, mrnumber = {2674631}, zbl = {1205.35174}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/} }
TY - JOUR AU - Freitas, Pedro AU - Siudeja, Batłomiej TI - Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 648 EP - 676 VL - 16 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/ DO - 10.1051/cocv/2009018 LA - en ID - COCV_2010__16_3_648_0 ER -
%0 Journal Article %A Freitas, Pedro %A Siudeja, Batłomiej %T Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 648-676 %V 16 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/ %R 10.1051/cocv/2009018 %G en %F COCV_2010__16_3_648_0
Freitas, Pedro; Siudeja, Batłomiej. Bounds for the first Dirichlet eigenvalue of triangles and quadrilaterals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 648-676. doi : 10.1051/cocv/2009018. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009018/
[1] New bounds for the principal Dirichlet eigenvalue of planar regions. Experiment. Math. 15 (2006) 333-342. | Zbl
and ,[2] A numerical study of the spectral gap. J. Phys. A 41 (2008) 055201. | Zbl
and ,[3] Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 547-560. | Zbl | mathdoc-id
and ,[4] Upper and lower bounds for the first Dirichlet eigenvalue of a triangle. Proc. Amer. Math. Soc. 134 (2006) 2083-2089. | Zbl
,[5] Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles and rhombi. J. Funct. Anal. 251 (2007) 376-398. | Zbl
,[6] Constraintes rectilignes parallèles et valeurs propres de membranes vibrantes. Z. Angew. Math. Phys. 17 (1966) 457-460. | Zbl
,[7] Bounds for the first eigenvalue of a rhombic membrane. J. Math. Phys. 39 (1960/1961) 18-34. | Zbl
and ,[8] On the principal frequency of a membrane and the torsional rigidity of a beam, in Studies in mathematical analysis and related topics, Essays in honor of George Pólya, Stanford Univ. Press, Stanford (1962) 227-231.
,[9] Brascamp-Lieb-Luttinger inequalities for convex domains of finite inradius. Duke Math. J. 113 (2002) 93-131. | Zbl
,[10] Isoperimetric inequalities in mathematical physics, Annals of Mathematical Studies 27. Princeton University Press, Princeton (1951). | Zbl
and ,[11] A lower bound for the fundamental frequency of a convex region. Proc. Amer. Math. Soc. 81 (1981) 65-70. | Zbl
,[12] “Best possible” upper and lower bounds for the zeros of the Bessel fuction Jv(x). Trans. Amer. Math. Soc. 351 (1999) 2833-2859. | Zbl
and ,[13] Sharp bounds for eigenvalues of triangles. Michigan Math. J. 55 (2007) 243-254. | Zbl
,[14] Isoperimetric inequalities for eigenvalues of triangles. Ind. Univ. Math. J. (to appear).
,Cité par Sources :