The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 794-805
Voir la notice de l'article provenant de la source Numdam
The paper deals with the genericity of domain-dependent spectral properties of the laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of exponential decay of a damped membrane and an approximate controllability result for the bilinear Schrödinger equation.
DOI :
10.1051/cocv/2009014
Classification :
37C20, 47A55, 47A75, 49K20, 49K30, 93B05
Keywords: genericity, laplacian-Dirichlet eigenfunctions, non-resonant spectrum, shape optimization, control
Keywords: genericity, laplacian-Dirichlet eigenfunctions, non-resonant spectrum, shape optimization, control
@article{COCV_2010__16_3_794_0,
author = {Privat, Yannick and Sigalotti, Mario},
title = {The squares of the {laplacian-Dirichlet} eigenfunctions are generically linearly independent},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {794--805},
publisher = {EDP-Sciences},
volume = {16},
number = {3},
year = {2010},
doi = {10.1051/cocv/2009014},
mrnumber = {2674637},
zbl = {1206.35181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009014/}
}
TY - JOUR AU - Privat, Yannick AU - Sigalotti, Mario TI - The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 794 EP - 805 VL - 16 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009014/ DO - 10.1051/cocv/2009014 LA - en ID - COCV_2010__16_3_794_0 ER -
%0 Journal Article %A Privat, Yannick %A Sigalotti, Mario %T The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 794-805 %V 16 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009014/ %R 10.1051/cocv/2009014 %G en %F COCV_2010__16_3_794_0
Privat, Yannick; Sigalotti, Mario. The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 794-805. doi: 10.1051/cocv/2009014
Cité par Sources :
