Voir la notice de l'article provenant de la source Numdam
The paper deals with the genericity of domain-dependent spectral properties of the laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of exponential decay of a damped membrane and an approximate controllability result for the bilinear Schrödinger equation.
@article{COCV_2010__16_3_794_0, author = {Privat, Yannick and Sigalotti, Mario}, title = {The squares of the {laplacian-Dirichlet} eigenfunctions are generically linearly independent}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {794--805}, publisher = {EDP-Sciences}, volume = {16}, number = {3}, year = {2010}, doi = {10.1051/cocv/2009014}, mrnumber = {2674637}, zbl = {1206.35181}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009014/} }
TY - JOUR AU - Privat, Yannick AU - Sigalotti, Mario TI - The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 794 EP - 805 VL - 16 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009014/ DO - 10.1051/cocv/2009014 LA - en ID - COCV_2010__16_3_794_0 ER -
%0 Journal Article %A Privat, Yannick %A Sigalotti, Mario %T The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 794-805 %V 16 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009014/ %R 10.1051/cocv/2009014 %G en %F COCV_2010__16_3_794_0
Privat, Yannick; Sigalotti, Mario. The squares of the laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 794-805. doi: 10.1051/cocv/2009014
Cité par Sources :