Necessary conditions for weak lower semicontinuity on domains with infinite measure
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 457-471
Voir la notice de l'article provenant de la source Numdam
We derive sharp necessary conditions for weak sequential lower semicontinuity of integral functionals on Sobolev spaces, with an integrand which only depends on the gradient of a scalar field over a domain in . An emphasis is put on domains with infinite measure, and the integrand is allowed to assume the value .
DOI :
10.1051/cocv/2009005
Classification :
49J45
Keywords: scalar integral functionals, weak lower semicontinuity, necessary conditions
Keywords: scalar integral functionals, weak lower semicontinuity, necessary conditions
@article{COCV_2010__16_2_457_0,
author = {Kr\"omer, Stefan},
title = {Necessary conditions for weak lower semicontinuity on domains with infinite measure},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {457--471},
publisher = {EDP-Sciences},
volume = {16},
number = {2},
year = {2010},
doi = {10.1051/cocv/2009005},
mrnumber = {2654202},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/}
}
TY - JOUR AU - Krömer, Stefan TI - Necessary conditions for weak lower semicontinuity on domains with infinite measure JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 457 EP - 471 VL - 16 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/ DO - 10.1051/cocv/2009005 LA - en ID - COCV_2010__16_2_457_0 ER -
%0 Journal Article %A Krömer, Stefan %T Necessary conditions for weak lower semicontinuity on domains with infinite measure %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 457-471 %V 16 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/ %R 10.1051/cocv/2009005 %G en %F COCV_2010__16_2_457_0
Krömer, Stefan. Necessary conditions for weak lower semicontinuity on domains with infinite measure. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 457-471. doi: 10.1051/cocv/2009005
Cité par Sources :