Voir la notice de l'article provenant de la source Numdam
We derive sharp necessary conditions for weak sequential lower semicontinuity of integral functionals on Sobolev spaces, with an integrand which only depends on the gradient of a scalar field over a domain in . An emphasis is put on domains with infinite measure, and the integrand is allowed to assume the value .
@article{COCV_2010__16_2_457_0, author = {Kr\"omer, Stefan}, title = {Necessary conditions for weak lower semicontinuity on domains with infinite measure}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {457--471}, publisher = {EDP-Sciences}, volume = {16}, number = {2}, year = {2010}, doi = {10.1051/cocv/2009005}, mrnumber = {2654202}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/} }
TY - JOUR AU - Krömer, Stefan TI - Necessary conditions for weak lower semicontinuity on domains with infinite measure JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 457 EP - 471 VL - 16 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/ DO - 10.1051/cocv/2009005 LA - en ID - COCV_2010__16_2_457_0 ER -
%0 Journal Article %A Krömer, Stefan %T Necessary conditions for weak lower semicontinuity on domains with infinite measure %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 457-471 %V 16 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/ %R 10.1051/cocv/2009005 %G en %F COCV_2010__16_2_457_0
Krömer, Stefan. Necessary conditions for weak lower semicontinuity on domains with infinite measure. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 457-471. doi : 10.1051/cocv/2009005. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/
[1] Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer, Berlin etc. (1989). | Zbl
,[2] Modern Methods in the Calculus of Variations: Lp Spaces, Springer Monographs in Mathematics. Springer, New York (2007). | Zbl
and ,[3] Direct methods in the calculus of variations. World Scientific, Singapore (2003). | Zbl
,[4] On the interior of the convex hull of an Euclidean set. Bull. Am. Math. Soc. 53 (1947) 299-301. | Zbl
,[5] Sobolev spaces. Springer-Verlag, Berlin etc. (1985). | Zbl
,[6] Integral estimates for differentiable functions on unbounded domains. Proc. Steklov Inst. Math. 170 (1987) 267-283. Translation from Tr. Mat. Inst. Steklova 170 (1984) 233-247 (Russian). | Zbl
,Cité par Sources :