Necessary conditions for weak lower semicontinuity on domains with infinite measure
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 457-471.

Voir la notice de l'article provenant de la source Numdam

We derive sharp necessary conditions for weak sequential lower semicontinuity of integral functionals on Sobolev spaces, with an integrand which only depends on the gradient of a scalar field over a domain in N . An emphasis is put on domains with infinite measure, and the integrand is allowed to assume the value +.

DOI : 10.1051/cocv/2009005
Classification : 49J45
Keywords: scalar integral functionals, weak lower semicontinuity, necessary conditions
@article{COCV_2010__16_2_457_0,
     author = {Kr\"omer, Stefan},
     title = {Necessary conditions for weak lower semicontinuity on domains with infinite measure},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {457--471},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {2},
     year = {2010},
     doi = {10.1051/cocv/2009005},
     mrnumber = {2654202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/}
}
TY  - JOUR
AU  - Krömer, Stefan
TI  - Necessary conditions for weak lower semicontinuity on domains with infinite measure
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 457
EP  - 471
VL  - 16
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/
DO  - 10.1051/cocv/2009005
LA  - en
ID  - COCV_2010__16_2_457_0
ER  - 
%0 Journal Article
%A Krömer, Stefan
%T Necessary conditions for weak lower semicontinuity on domains with infinite measure
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 457-471
%V 16
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/
%R 10.1051/cocv/2009005
%G en
%F COCV_2010__16_2_457_0
Krömer, Stefan. Necessary conditions for weak lower semicontinuity on domains with infinite measure. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 457-471. doi : 10.1051/cocv/2009005. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009005/

[1] B. Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer, Berlin etc. (1989). | Zbl

[2] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces, Springer Monographs in Mathematics. Springer, New York (2007). | Zbl

[3] E. Giusti, Direct methods in the calculus of variations. World Scientific, Singapore (2003). | Zbl

[4] W. Gustin, On the interior of the convex hull of an Euclidean set. Bull. Am. Math. Soc. 53 (1947) 299-301. | Zbl

[5] V.G. Maz'Ya, Sobolev spaces. Springer-Verlag, Berlin etc. (1985). | Zbl

[6] Yu.S. Nikol'Skij, Integral estimates for differentiable functions on unbounded domains. Proc. Steklov Inst. Math. 170 (1987) 267-283. Translation from Tr. Mat. Inst. Steklova 170 (1984) 233-247 (Russian). | Zbl

Cité par Sources :