On solution to an optimal shape design problem in 3-dimensional linear magnetostatics
Applications of Mathematics, Tome 49 (2004) no. 5, pp. 441-464.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we present theoretical, computational, and practical aspects concerning 3-dimensional shape optimization governed by linear magnetostatics. The state solution is approximated by the finite element method using Nédélec elements on tetrahedra. Concerning optimization, the shape controls the interface between the air and the ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal shape. Then we state a finite element approximation to the optimization problem and prove the convergence of the approximated solutions. In the end, we solve the problem for the optimal shape of an electromagnet that arises in the research on magnetooptic effects and that was manufactured afterwards.
DOI : 10.1023/B:APOM.0000048122.27970.19
Classification : 35J40, 49J20, 65K10, 65N30
Keywords: optimal shape design; finite element method; magnetostatics; magnetooptics
@article{10_1023_B_APOM_0000048122_27970_19,
     author = {Luk\'a\v{s}, Dalibor},
     title = {On solution to an optimal shape design problem in 3-dimensional linear magnetostatics},
     journal = {Applications of Mathematics},
     pages = {441--464},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2004},
     doi = {10.1023/B:APOM.0000048122.27970.19},
     mrnumber = {2086088},
     zbl = {1099.49001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000048122.27970.19/}
}
TY  - JOUR
AU  - Lukáš, Dalibor
TI  - On solution to an optimal shape design problem in 3-dimensional linear magnetostatics
JO  - Applications of Mathematics
PY  - 2004
SP  - 441
EP  - 464
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000048122.27970.19/
DO  - 10.1023/B:APOM.0000048122.27970.19
LA  - en
ID  - 10_1023_B_APOM_0000048122_27970_19
ER  - 
%0 Journal Article
%A Lukáš, Dalibor
%T On solution to an optimal shape design problem in 3-dimensional linear magnetostatics
%J Applications of Mathematics
%D 2004
%P 441-464
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000048122.27970.19/
%R 10.1023/B:APOM.0000048122.27970.19
%G en
%F 10_1023_B_APOM_0000048122_27970_19
Lukáš, Dalibor. On solution to an optimal shape design problem in 3-dimensional linear magnetostatics. Applications of Mathematics, Tome 49 (2004) no. 5, pp. 441-464. doi : 10.1023/B:APOM.0000048122.27970.19. http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000048122.27970.19/

Cité par Sources :