Non-uniqueness of almost unidirectional inviscid compressible flow
Applications of Mathematics, Tome 49 (2004) no. 3, pp. 247-268.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Our aim is to find roots of the non-unique behavior of gases which can be observed in certain axisymmetric nozzle geometries under special flow regimes. For this purpose, we use several versions of the compressible Euler equations. We show that the main reason for the non-uniqueness is hidden in the energy decomposition into its internal and kinetic parts, and their complementary behavior. It turns out that, at least for inviscid compressible flows, a bifurcation can occur only at flow regimes with the Mach number equal to one (sonic states). Analytical quasi-one-dimensional results are supplemented by quasi-one-dimensional and axisymmetric three-dimensional finite volume computations. Good agreement between quasi-one-dimensional and axisymmetric results, including the presence of multiple stationary solutions, is presented for axisymmetric nozzles with reasonably small slopes of the radius.
DOI : 10.1023/B:APOM.0000042365.99783.b3
Classification : 35L65, 65H10, 76H05, 76M25, 76N10, 76N15
Keywords: non-uniqueness; inviscid gas flow; compressible Euler equations; quasi-one-dimensional; axisymmetric; finite volume method
@article{10_1023_B_APOM_0000042365_99783_b3,
     author = {\v{S}ol{\'\i}n, Pavel and Segeth, Karel},
     title = {Non-uniqueness of almost unidirectional inviscid compressible flow},
     journal = {Applications of Mathematics},
     pages = {247--268},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2004},
     doi = {10.1023/B:APOM.0000042365.99783.b3},
     mrnumber = {2059429},
     zbl = {1099.76053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000042365.99783.b3/}
}
TY  - JOUR
AU  - Šolín, Pavel
AU  - Segeth, Karel
TI  - Non-uniqueness of almost unidirectional inviscid compressible flow
JO  - Applications of Mathematics
PY  - 2004
SP  - 247
EP  - 268
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000042365.99783.b3/
DO  - 10.1023/B:APOM.0000042365.99783.b3
LA  - en
ID  - 10_1023_B_APOM_0000042365_99783_b3
ER  - 
%0 Journal Article
%A Šolín, Pavel
%A Segeth, Karel
%T Non-uniqueness of almost unidirectional inviscid compressible flow
%J Applications of Mathematics
%D 2004
%P 247-268
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000042365.99783.b3/
%R 10.1023/B:APOM.0000042365.99783.b3
%G en
%F 10_1023_B_APOM_0000042365_99783_b3
Šolín, Pavel; Segeth, Karel. Non-uniqueness of almost unidirectional inviscid compressible flow. Applications of Mathematics, Tome 49 (2004) no. 3, pp. 247-268. doi : 10.1023/B:APOM.0000042365.99783.b3. http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000042365.99783.b3/

Cité par Sources :