Numerical methods for fourth order nonlinear degenerate diffusion problems
Applications of Mathematics, Tome 47 (2002) no. 6, pp. 517-543.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant), the coupling of the thin film equation with an evolution equation for the surfactant density has to be considered. Discretizing the arising nonlinearities in a subtle way enables us to establish discrete counterparts of the essential integral estimates found in the continuous setting. As a consequence, the resulting algorithms are efficient, and results on convergence and nonnegativity or even strict positivity of discrete solutions follow in a natural way. The paper presents a finite element and a finite volume scheme and compares both approaches. Furthermore, an overview over qualitative properties of solutions is given, and various applications show the potential of the proposed approach.
DOI : 10.1023/B:APOM.0000034537.55985.44
Classification : 35K35, 35K55, 35K65, 65M12, 65M50, 65M60, 76D08
Keywords: thin film; fourth order degenerate parabolic equation; nonnegativity preserving scheme; surfactant driven flow; finite element method; finite volume method
@article{10_1023_B_APOM_0000034537_55985_44,
     author = {Becker, J\"urgen and Gr\"un, G\"unther and Lenz, Martin and Rumpf, Martin},
     title = {Numerical methods for fourth order nonlinear degenerate diffusion problems},
     journal = {Applications of Mathematics},
     pages = {517--543},
     publisher = {mathdoc},
     volume = {47},
     number = {6},
     year = {2002},
     doi = {10.1023/B:APOM.0000034537.55985.44},
     mrnumber = {1948194},
     zbl = {1090.35086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000034537.55985.44/}
}
TY  - JOUR
AU  - Becker, Jürgen
AU  - Grün, Günther
AU  - Lenz, Martin
AU  - Rumpf, Martin
TI  - Numerical methods for fourth order nonlinear degenerate diffusion problems
JO  - Applications of Mathematics
PY  - 2002
SP  - 517
EP  - 543
VL  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000034537.55985.44/
DO  - 10.1023/B:APOM.0000034537.55985.44
LA  - en
ID  - 10_1023_B_APOM_0000034537_55985_44
ER  - 
%0 Journal Article
%A Becker, Jürgen
%A Grün, Günther
%A Lenz, Martin
%A Rumpf, Martin
%T Numerical methods for fourth order nonlinear degenerate diffusion problems
%J Applications of Mathematics
%D 2002
%P 517-543
%V 47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000034537.55985.44/
%R 10.1023/B:APOM.0000034537.55985.44
%G en
%F 10_1023_B_APOM_0000034537_55985_44
Becker, Jürgen; Grün, Günther; Lenz, Martin; Rumpf, Martin. Numerical methods for fourth order nonlinear degenerate diffusion problems. Applications of Mathematics, Tome 47 (2002) no. 6, pp. 517-543. doi : 10.1023/B:APOM.0000034537.55985.44. http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000034537.55985.44/

Cité par Sources :