On Brown's method with convexity hypotheses
Applications of Mathematics, Tome 49 (2004) no. 2, pp. 165-184.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given two initial points generating monotone convergent Brown iterations in the context of the monotone Newton theorem (MNT), it is proved that if one of them is an upper bound of the other, then the same holds for each pair of respective terms in the Brown sequences they generate. This comparison result is carried over to the corresponding Brown-Fourier iterations. An illustration is discussed.
DOI : 10.1023/B:APOM.0000027222.62203.3c
Classification : 65H10
Keywords: nonlinear systems; convex functions; Brown’s method; monotone convergence; Fourier iterates
@article{10_1023_B_APOM_0000027222_62203_3c,
     author = {Milaszewicz, Juan Pedro},
     title = {On {Brown's} method with convexity hypotheses},
     journal = {Applications of Mathematics},
     pages = {165--184},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     doi = {10.1023/B:APOM.0000027222.62203.3c},
     mrnumber = {2043080},
     zbl = {1099.65045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000027222.62203.3c/}
}
TY  - JOUR
AU  - Milaszewicz, Juan Pedro
TI  - On Brown's method with convexity hypotheses
JO  - Applications of Mathematics
PY  - 2004
SP  - 165
EP  - 184
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000027222.62203.3c/
DO  - 10.1023/B:APOM.0000027222.62203.3c
LA  - en
ID  - 10_1023_B_APOM_0000027222_62203_3c
ER  - 
%0 Journal Article
%A Milaszewicz, Juan Pedro
%T On Brown's method with convexity hypotheses
%J Applications of Mathematics
%D 2004
%P 165-184
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000027222.62203.3c/
%R 10.1023/B:APOM.0000027222.62203.3c
%G en
%F 10_1023_B_APOM_0000027222_62203_3c
Milaszewicz, Juan Pedro. On Brown's method with convexity hypotheses. Applications of Mathematics, Tome 49 (2004) no. 2, pp. 165-184. doi : 10.1023/B:APOM.0000027222.62203.3c. http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000027222.62203.3c/

Cité par Sources :