A mathematical model of suspension bridges
Applications of Mathematics, Tome 49 (2004) no. 1, pp. 39-55.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove the existence of weak T-periodic solutions for a nonlinear mathematical model associated with suspension bridges. Under further assumptions a regularity result is also given.
DOI : 10.1023/B:APOM.0000024519.46627.4f
Classification : 35A35, 35B10, 35Q72, 70K30, 74H45, 74K10
Keywords: suspension bridges; periodic solution; Galerkin approximation; Leray-Schauder principle
@article{10_1023_B_APOM_0000024519_46627_4f,
     author = {Li\c{t}canu, Gabriela},
     title = {A mathematical model of suspension bridges},
     journal = {Applications of Mathematics},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     doi = {10.1023/B:APOM.0000024519.46627.4f},
     mrnumber = {2032147},
     zbl = {1099.74037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024519.46627.4f/}
}
TY  - JOUR
AU  - Liţcanu, Gabriela
TI  - A mathematical model of suspension bridges
JO  - Applications of Mathematics
PY  - 2004
SP  - 39
EP  - 55
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024519.46627.4f/
DO  - 10.1023/B:APOM.0000024519.46627.4f
LA  - en
ID  - 10_1023_B_APOM_0000024519_46627_4f
ER  - 
%0 Journal Article
%A Liţcanu, Gabriela
%T A mathematical model of suspension bridges
%J Applications of Mathematics
%D 2004
%P 39-55
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024519.46627.4f/
%R 10.1023/B:APOM.0000024519.46627.4f
%G en
%F 10_1023_B_APOM_0000024519_46627_4f
Liţcanu, Gabriela. A mathematical model of suspension bridges. Applications of Mathematics, Tome 49 (2004) no. 1, pp. 39-55. doi : 10.1023/B:APOM.0000024519.46627.4f. http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024519.46627.4f/

Cité par Sources :