Convergence of Rothe's method in Hölder spaces
Applications of Mathematics, Tome 48 (2003) no. 5, pp. 353-365.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.
DOI : 10.1023/B:APOM.0000024481.01947.da
Classification : 35B50, 35K20, 46E35, 65M12, 65M20, 65M40
Keywords: Rothe’s method; method of lines; convergence of Rothe’s method
@article{10_1023_B_APOM_0000024481_01947_da,
     author = {Kikuchi, N. and Ka\v{c}ur, J.},
     title = {Convergence of {Rothe's} method in {H\"older} spaces},
     journal = {Applications of Mathematics},
     pages = {353--365},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2003},
     doi = {10.1023/B:APOM.0000024481.01947.da},
     mrnumber = {2008889},
     zbl = {1099.65079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024481.01947.da/}
}
TY  - JOUR
AU  - Kikuchi, N.
AU  - Kačur, J.
TI  - Convergence of Rothe's method in Hölder spaces
JO  - Applications of Mathematics
PY  - 2003
SP  - 353
EP  - 365
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024481.01947.da/
DO  - 10.1023/B:APOM.0000024481.01947.da
LA  - en
ID  - 10_1023_B_APOM_0000024481_01947_da
ER  - 
%0 Journal Article
%A Kikuchi, N.
%A Kačur, J.
%T Convergence of Rothe's method in Hölder spaces
%J Applications of Mathematics
%D 2003
%P 353-365
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024481.01947.da/
%R 10.1023/B:APOM.0000024481.01947.da
%G en
%F 10_1023_B_APOM_0000024481_01947_da
Kikuchi, N.; Kačur, J. Convergence of Rothe's method in Hölder spaces. Applications of Mathematics, Tome 48 (2003) no. 5, pp. 353-365. doi : 10.1023/B:APOM.0000024481.01947.da. http://geodesic.mathdoc.fr/articles/10.1023/B:APOM.0000024481.01947.da/

Cité par Sources :